TECHM!CAL MANUAL

DIRECT SUPPORT AMD GENERAL SUFPORT MAINTENAMCE MANUAL

TEST SET, ANALYZER, CAMERA LS-80A (MSN 6760-00-878-0593)

W A R N I N G

DON'T TAKE CHANCES

DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL TEST SET, ANALYZER CAMER LS-8NA (NSN 6750-00-878-0593)

REPORTING OF ERRORS

You can improve this manual by recommending improvements using DA Form 2028-2 (Test) located in the back of the manual. Simply tear out the self addressed form, fill th out as shown on the sample, fold it where shown, and drop it in the mail.
If there are no blan'z DA Form 2028-2 (Teat) in the back of your m nual, use the standard DA Form 2028 (Recommended Changes to Publications and Blapk Forms) and forward to the Commander, ATTN: AMSEL-MA-q, Fort Monmouth, NJ 07703
Paragraph Page
CHAPTER 1. INTRODUCTION 1-1 1-1
, FUNCTIONING OF EQUIPMENT
section I. Block diagram analysis

II. Camera analyzer stage analysis.| $2-1$ | $2-1$ |
| :--- | :--- |
| 2 | |

III Camera test adapter stage analysis.2-2
CHAPTER 3 DIRECT SUPPORT MAINTENANCE INSTRUCTIONSsection I. General.3-1 3-1
II. Tools and equipment 3-1
III. DS troubleshooting 3-1
IV. DS maintenance of camera analyzer 3-12
V. DS maintenance of camera test adapter 3-17
VI DS testing procedures 3-19
CHAPTER 4. GENERAL SUPPORT MAINTENANCE INSTRUCTIONS
4-1
4-1
Section I. General
Section I. General 4-1 4-1 4-1
II. Tools and equipment (GS)
II. Tools and equipment (GS)
4-2
4-2
III. GS troubleshooting
III. GS troubleshooting
4-24
4-24
IV. GS maintenance of camera analyzer
IV. GS maintenance of camera analyzer
4-33
4-33
V. GS maintenance of camera test adapter
V. GS maintenance of camera test adapter 4-35
APPENDIX REFERENCES A-1
INDEX. Index 1
LIST OF ILLUSTRATIONS

Figure No	Title	Page
2-1	Camera analyzer, block diagram.	2-2
2-2	Camera analyzer, power distribution	2-6
2-3	Camera analyzer, recycle initiate circuit, simplified schematic diagram.	2-19
2-4	Camera analyzer, under and over exposure circuit, simplified schematic diagram.	2-20
2-5	Camera analyzer. increase and decrease exposure circuit, simplified schematic diagram.	2-22
2-6	Camera test adapter, power distribution.	2-23
2-7	Camera test adapter, power supply, block diagram.	2-24
3-1	Test drive generator fabrication	3-3
3-2	Camera analyzer, bench test setup	3-3
3-3	Replacement of indicator lamp assembly.	3-13

Figure N o.	Title	Page
3-4	Exposure test adapter, parts location	3-15
3-5]	Module test adapter, parts location	3-16
3-6	Camera analyzer, adjustments	3-17
3-7	Camera test adapter, exploded view	3-20
4-1)	Variable voltage test fixture fabrication deta	4-7
4-2.1)	Printed circuit board and component assembly A16, parts location (sheet 1 of 5).	4-28
4-2(2)	Printedcircuit board and component assembly A16. parts location (sheet 2 of 5).	4-29
4-2(3)	Printed circuit board and component assembly A16, parts location (sheet 3 of 5).	4-29
4-2(4)	Printed circuit board and component assembly A16, parts location (sheet 4 of 5).	4-30
4-2(5)	Printed circuit board and component assembly A16, parts location (sheet 5 of 5).	4-31
4-3	Chassis and component assembly, parts location.	4-32
4-4\|	Assembly A15, parts location	4-32
4-5	Mode and exposure board and switch assembly, parts location.	4-33
4-6	Camera test adapter adjustments	4-34
F0-1	Camera test adapter, overall block diagram	(Located in back of manual)
FO-2	Control-power supply intervalometer module test, block diagram	(Located in back of manual)
F0-3	Control-power supply film drive amplifier module, test, block diagram	(Located in back of manual)
F0-4	Control-power supply PC board and component assembly module test, block dia	(Located in back of manual)
F0-5	Control-power supply tests, block diagram	(Located in back of manual)
F0-6	Lens cones test, block diagram	(Located in back of manual)
F0-7	Camera body tests, block diagram.	.. (Located in back of manual)
FO-8	Internal tests, block diagram....	. (Located in back of manual)
FO-9	Auto mode test, block diagram	(Located in back of manual)
FO-10	Pulse and IMC pulse mode test, block diagram	((Located in back of manual)
F0-11	Night mode test, block diagram.	(Located in back of manual)
FO-12(1)	Camera analyzer, schematic diagram (sheet 1 of 2).	(Located in back of manual)
FO-12(2)	Camera analyzer, schematic diagram (sheet 2 of 2).	(Located in back of manual)
F0-13(10)	Camera analyzer, ring diagram (sheet 1 of 2).	(Located in back of manual)
FO-13(2)	Camera analyzer, wiring diagram (sheet 2 of 2)	(Located in back of manual)
FO-14(1)	Printed circuit board and component assembly, wiring diagram (sheet 1 of 4)	(Located in back of manual)
FO-14(2)	Printed circuit board and component assembly, wiring diagram (sheet 2 of 4)	(Located in back of manual)
FO-14(3)	Printed circuit board and component assembly, wiring diagram (sheet 3 of 4)	(Located in back of manual)
FO-14(4)	Printed circuit board and component assembly, wiring diagram (sheet 4 of 4)	(Located in back of manual)
FO-15	Camera test adapter, schematic diagram.	(Located in back of manual)
[FO-16(1)	Camera test adapter, wiring diagram (sheet 1 of 2).	(Located in back of manual)
FO-16(2)	Camera test adapter, wiring diagram (sheet 2 of 2).	(Located in back of manual)
FO-17	Camera analyzer, DS maintenance, exploded view	(Located in back of manual)
F0-18	Camera analyzer, cable assemblies, parts location.	(Located in back of manual)
FO-19	Camera analyzer, GS maintenance, exploded view	(Located in back of manual)
FO-20	Color code marking for MIL-STD resistors, inductors, and capacitors	(Located in back of manual)

LIST OF TABLES

Table	Title	Page
1-1	Common names	1-1
3-1	Materials required for direct support maintenance	3-1
3-2	Camera analyzer bench test..................	3-4
3-3	Camera analyzer DS troubleshooting.	3-5
3-4	Camera test adapter bench test . . .	3-8
3-5	Camera test adapter DS troubleshooting.	3-10
3-6	Tools, test equipment, and materials required for camera analyzer DS physical tests and inspection	3-19
3-7]	Tools, test equipment, and materials required camera test adapter physical tests and inspection	3-22
4-1		4-1
4-2	Lamp test circuit bench test....................	4-3
4-3	Lamp test circuit troubleshooting	4-3
4-4	Internal test circuit bench test ${ }^{-}$	4-5
4-5	Internal test 1 circuit troubleshooting	4-5
4-6	Internal test 1 circuit voltage measurements.	4-6
4-7	Internal test 1 circuit resistance measurements.	4-6
4-8	Internal test 2 circuit bench test	4-6
4-9	Internal test 2 circuit troubleshooting.	$4-6$
4-10	Internal test 2 circuit voltage measurements.	4-7
4-11]	Internal test 2 circuit resistance measurements.	$4-7$
4-12	Control-power supply section bench test \ldots...	$4-7$
4-13	Control-power supply section troubleshooting.	$4-11$
4-14	Control-power supply section voltage measurements.	$4-15$
4-15	Control-power supply section resistance measurements	4-15

Figure No		Title		Page
4-16	Lens cones section bench test.			4-16
4-17	Lens cones section troubleshooting			4-19
4-18	Lens cones section resistance measurements			4-18
4-19	Camera body section bench test.			4-19
4-20	Camera body section troubleshooting			4-21
4-21	Camera body section voltage measurements			4-22
4-22	Camera body section resistance measurements			4-22
4-23	Camera test adapter GS troubleshooting. .			4-23
4-24	Camera test adapter voltage measurements.			4-23
4-25	Camera test adapter resistance measurements			4-24

CHAPTER 1

INTRODUCTION

1-1. Scope

a. This manual contains direct support (DS) and general support (GS) maintenance instructions for Teat Set Analyzer, Camera LS-90A. It includes instructions appropriate to DS and GS maintenance for troubleshooting, testing, aligning, repairing the equipment, replacing maintenance parts, and repairing specified maintenance parts. It also lists the tools, materials, and teat equipment required to perform DS and GS maintenance
b. The complete technical manual for this equipment includes TM 11-6760-239-12.

NOTE

For applicable forms and records, refer to TM 11-6760-239-12.

1-2. Indexes of Publications

a. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment
b. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment
1-3. Common Names
Common names have been assigned to the items listed in table 1-1 below.

Table 1-1 Common Names

Common names
Camera analyzer.
Test cable W1
Test cable W2..
Test cable W3.
Test cable W4.
Test cable W5 ,
Test cable W6.
Test cable W7
Test cable W8. Cable assembly, special purpose, electri-
Power cable W9 Cable assembly, special purpose electri-
Camera test adapter. .
Cone shutter test cable.
Body shutter test cable.
cal: (W8, servo drive and S / C). cal: (W9, input power).
Test Set, Analyzer, Camera LS-80A
Cable assembly, special purpose electrical (W1, right relay assembly test). Cable assembly special purpose electrical (W2, left relay assembly test).
Cable assembly, special purpose, electrical: (W3, lens cone test).
Cable assembly, special purpose, electrical: (W4, camera body test).
Cable assembly, special purpose, electrical: (W5, control 1).
Cable assembly, special purpose, electricat (W6, control 2).
Cable assembly, special purpose, electrical: (W7, sensor test).
cal: (W9, input power).
Adapter. Test, Camera LM-178A
Cable assembly, special purpose, electrical: (coneshutter test).
Cable assembly, special purpose, electrical: (body-shutter test).

CHAPTER 2

FUNCTIONING OF EQUIPMENT

Section I. BLOCK DIAGRAM ANALYSIS

2-1. Camera Analyzer Functional Description (fig. 2-1)
a The camera analyzer consists of three main test sections and a MASTER section. The three main test sections are: CONTROL-POWER SUPPLY section, LENS CONE section, and CAMERA BODY section. The camera test adapter is an accessory equipment to the camera analyzer and its functional description is covered in paragraph 2-2. Figure 2-1 illustration the functional relationship of the camera analyzer test sections and MASTER section.
b. The MASTER section programs the camera analyzer for internal tests or for tests by one of the three test sections The MASTER section includes POWER switch S7, LAMP TEST switch S6, MASTER switch S1 and binding posts for connection of external test equipment POWER switch S7 controls application of 115 volts, 400 Hz and +28 volts dc primary power to the camera analyzer. LAMP TEST switch S6 is a self-test feature which checks operation of the camera analyzer front panel lamps, except the primary power AC PWR and DC PWR indicators. The binding posts permit test equipment hookup to the camera analyzer for use during testing. MASTER switch S1 is a five-position switch, three positions of which are used to select one of the three test sections, a fourth to select INTERNAL TEST 1, and the fifth to select INTERNAL TEST 2.
c. The CONTROL-POWER SUPPLY section provides the control voltages and signals to test Control, Power Supply LA-406A, or the intervalometer, film drive amplifier, and PC board and component assembly modules of the LA-406A. The section includes the E V/H simulator circuit, the motor tachometer simulator circuit, MODULE TEST switch S1, TEST switch S2 and CONFIGURATION switch S3. The connectors associated with this section are CONTROL (J1) connector J9, CONTROL (J2) connector J10, and MODULES connector J11. During LA-406A tests connectors J9 and J10 are used to interconnect the LA-406A with the camera analyzer. Connector J11 is used when tests are performed on the intervalometer, film drive amplifier, and PC board and component assembly modules of the LA-406A.
d. The LENS CONE section provides the control voltages and signals to test Lens Cone, Camera, Aerial Reconnaissance LA-370A (1 3/4-inch, also called

44mm), LA-371A (3-inch), LA-374A 6-inch), and LA-372A (12-inch); Light Sensor, Aircraft Camera LA-407A; and the S/C switch and servo drive module of the lens cone The LENS CONE section includes an increase/decrease dc exposure circuit, a simulated exposure feedback circuit, a photocell output simulator circuit, and TEST switch S10. The connectors associated with this section are LENS CONE J6, SENSOR J7, and MODULE J8.
e. The CAMERA BODY section provides the control signals and voltages required to test Body Drive, Aircraft Camera LA-373A. The section includes a recycle initiate circuit, TEST LEFT ASSEMBLY switch S8, TEST RIGHT ASSEMBLY switch S9, and MODE switch S5. Connectors associated with this section are SYS SIMULATOR J2, BODY J3, LEFT ASSEMBLY J4, and RIGHT ASSEMBLY J5.
f. The INTERNAL TEST 1 position of MASTER switch S1 programs the camera analyzer to test the internal -28 volts dc power supply, simulated footlamberts, and recycle initiate simulator circuits of the camera analyzer.
g. The INTERNAL TEST 2 position of MASTER switch S1 programs a test for the E V/H simulator circuit of the camera analyzer.

2-2. Camera Test Adapter Functional Description

The camera test adapter is used to provide mode selection and exposure system signals for testing Camera, Still Picture KA-76A. The camera test adapter electronic package consists of: a camera mode selector circuit; an exposure control circuit; a camera cycle circuit; indicator lamp assembly circuits; a lamp test circuit, three test point circuits; and a power supply circuit
a Camera Mode Selector Circuit. This circuit selects different operating modes for the camera under test as well as compensates for differences that exist when the camera is operated with a $13 / 4$-inch $(44 \mathrm{~mm}) 3$ inch, 6 -inch, or 12 -inch lens cone assembly. Its operating principles are given in paragraph $2-3 \mathrm{a}$
b. Exposure Control Circuit This circuit develops exposure signals for testing the shutter and diaphragm response of the camera's lens cone assembly. Its operating principles are given in paragraph $2-3 \mathrm{~b}$.
c. Camera Cycle Circuit. This circuit develops a

Figure 2-1. Camera analyzer, block diagram.
+28 vdc pulse for initiating a camera cycle. Its operating principles are given in paragraph $2-3 \mathrm{c}$.
d. Indicator Lamp Assembly Circuits. These circuits provide visual indications of normal camera operation as well as the application of dc power to the camera test adapter. Its operating principles are given in paragraph 2-3d.
e. Lamp Test Circuit. This circuit provides a means of testing the indicator lamp assemblies which provide indications of normal camera operation prior to a camera test. This insures correct indicator lamp operating during a camera test Its operating principles are given in paragraph $2-3 \mathrm{e}$.
f. Test Point Circuits. Three binding post test points are provided on the front panel of the camera test adapter. One test point is a common ground connection The remaining two test points are connected to signal lines in the camera. These test points permit checking internal circuits of the camera without disassembling the camera.

2-3. Camera Test Adapter Circuits (figs.FO-1 and FO-15)

a. Camera Mode Selector Circuit. This circuit consists primarily of MODE switch S1. When MODE switch S 1 is set at the AUTO position, switch contacts 1 and 2 (pin 1 is the switch common) are interrupted so the camera must be operated in the auto mode by Simulator, Control System, Camera LS-36A through the camera test adapter. The LS-36A together with Analyzer Set, Photographic Surveillance System LS-89A, is used in conjunction with the camera test adapter for DS and GS support maintenance. When MODE switch S1 is set at the PULSE, IMC PULSE, or NIGHT positions, the camera test adapter selects the camera's operating mode through switch contacts 1 and contacts 2,3 and 4, respectively.
b. Exposure Control Circuit. This circuit consists of section B of EXPOSURE selector switch S2, an associated variable resistor network consisting of resistors R6 through R13, and EXPOSURE NORMAL-INCR toggle switch S3 and EXPOSURE OVER-NORMAL UNDER switch S4.
(1) Exposure selector switch S2. Section B of two position wafer switch S 2 selects an exposure signal which is used to check the shutter and diaphragm response of the camera lens cone assembly. It selects between either of two different preset variable controls in a resistor network, or a photocell input that is produced by an external light source. Section A of EXPOSURE switch S2 completes the +28 volt dc interlock circuit of the lens cone assembly to ensure operating power for testing the camera.
(a) When S2 is set at the $44 \mathrm{mmcal}, 3-\mathrm{in}$. cal, 6in. cal, or $12-\mathrm{in}$. cal position, the higher level exposure signal is selected from variable resistor R11 for testing purposes. (Compensation for differences in the signal
requirements of the lens cone assemblies is made automatically through current limiting resistors R6 through R9 with switch section S2B.) When EXPOSURE switch S2 is set to the OPR ALL position, a portion of the dc voltage developed across variable resistor R12 is applied through resistor R10 and EXPOSURE switch section S2B to a summation point in the camera lens cone. At the summation point, the applied exposure signal current is summed with a dc feedback current from the diaphragm position potentiometer in the camera. The resultant current provides the error input to the camera exposure circuit The exposure circuit of the camera under test then causes operation of the shutter and lens cone diaphragm to null the error input resulting in the approximate shutter speed and aperture indicator positions shown below:

KA-76Camera under test with lens cane	S / C	Shutter speed indicator	Lens aperture indicator
$13 / 4$ in. $(44 \mathrm{~mm})$	100	$1 / 1500$ to $1 / 3000$	FIXED (5.6)
3 in.	50	$1 / 3000$	About 5.6
6 in.	50	$1 / 3000$	5.6 to 6.7
12 in	50	$1 / 3000$	5.6 to 8.0

(b) When EXPOSURE switch S 2 is set to the SEN position, exposure signals developed in the camem test adapter are disconnected from the camera. The SEN (sensitivity) switch position permits use of exposure signals developed by an external light source. This affords a means to qualitatively check the response of camera exposure circuits under changing light levels. If the light sensor is not available, photocell assembly PN 6680-930-1 (NSN 4920-00-867-0046) may be substituted and its resuits can be compared with the results obtained with light sensor PN 5526-100 (NSN 6760-00-070-4735) to determine whether the light sensor is defective. The approximate results obtained with EXPOSURE switch S2 set to the SEW position are as follows:

$\begin{gathered} \text { Camera } \\ \text { with lens } \end{gathered}$		Shutter speed	Aperture
$\begin{aligned} & 44 \mathrm{~mm} \\ & (13 / 4 \mathrm{in}) \end{aligned}$	None 25	$\begin{array}{lr} \\ 1 \\ 1000 & -1 \\ 1500\end{array}$	5.6
	None 50	1 2000 - ${ }^{1}$	5.6
	25\% 25	$1_{300}-{ }^{1}$	5.6
	25\% 100	1000 100	5.6
	25\% 200	${ }_{2000}-{ }^{-1}$	5.6
	8\% 25	$1_{100}-{ }^{1}$	5.6
	8\% 100	$1_{400}-{ }^{1}$	5.6
	8\% 400	$\begin{array}{ll}1500 & -\quad 1 \\ 15000\end{array}$	5.6
	1.56\% 00	1/60	5.6

2-4

Camera withiens	Fiter on light box	$\begin{gathered} \mathrm{SCC} \\ \text { control } \\ \text { gettinge } \end{gathered}$	Shutter speed	Aperture
	8\%	400	1/3000	40-
				4.5
	1.56\%	25	1/60	3.5
	1.56\%	50	1/100	3.5
	1/56\%	100	1/200	3.5
	1556\%	400	$\frac{1}{000}-\frac{1}{1000}$	3.5
			$800 \quad 1000$	
	0.5\%	75	1/60	3.5
	0.5\%	150	1/100	3.5
	0.5\%	300	1/200	3.5

(2) NORM-INCR toggle switch S3. When switch S3 is set at the NORM position, its contacts are open Under these conditions, camera exposure circuits are controlled by EXPOSURE switch S2 or the LIGHT LEVEL switch on the light box. When switch S3 is set at the INCH position, a dc ground path is completed through the switch to increase exposure relay 1A3A2K4 in the camera which energizes. As a result, the shutter is set to its lowest speed and the lens cone aperture is driven to its widest opening.
(3) OVER-NORMAL-UNDER toggle switch S4. This switch simulates underexposed and overex posed signals. When switch S 4 is set at the OVER position, a dc ground path is completed through the switch to energize over exposure relay 1A3A2K1 in the camera. As a result, a camera exposure is increased one $\mathrm{f} /$ stop.

NOTE
If the increase in camera exposure is accomplished by the shutter rather than by the diaphragm, the fractional value of the shutter speed will be doubled. For example, the shutter speed may change from $1 / 3000$ to $1 / 1500$. When switch S 4 is set at the UNDER position, it completes a dc ground path which energizes underexposure relay 1 A 3 A 2 K 2 in the camera. As a result, the camera exposure is decreased one $\mathrm{f} /$ stop.

NOTE

If a decrease in camera exposure is affected by the shutter rather than by the diaphragm, the fractional value of the shutter speed will be halved. For example, the shutter speed may change from $1 / 1500$ to $1 / 3000$. When switch S4 is set at the NORMAL position, it opens the dc ground path to the camera that is completed when the switch is set at either the OVER or UNDER exposure position.
c. Camera Cycle Circuit. This circuit consists of CYCLE pushbutton, switch S . When switch S 7 is momentarily depressed, it produces a momentary +28 volts dc pulse which is coupled to the camera to initiate a shutter cycle in all modes except autocycle.
d. Indicator Lump Assembly Circuits. These circuits consist of two indicator lamp assemblies (Al and A2) and a single indicator lamp, DS1. Indicator lamp DS1
illuminates when +28 volts dc is applied to the camera test adapter, provided POWER switch S6 is set at the ON position. Indicator lamp assembly Al has four sections, each of which illuminates to signify a camera event: namely, completion of the camera operate circuits by OPR ON lamp DS1; interruption of the film failure interlock switch by FILM FAIL lamp DS2 when film runout or breakage occurs or is simulate\& completion of the +28 volts dc interlock line between the systern simulator and the camera test adapter, and the camera, (provided pendant connector P2 is connected to the camera shutter assembly) by INTLK lamp DS3; and completion of the camera body night relay circuit by NIGHT lamp DS4. Similarly, indicator lamp assembly A2 has four sections which illuminate to signify the following camera events: actuation of the autocycle vacuum and autocycle trip switch by SYNC lamp DS1; actuation of the electronic flash switch for each camera cycle by FLASH lamp DS2; actuation of the data trip switch for each camera cycle by DATA lamp DS3; and actuation of the camera body - indicate switch for each camera cycle by CYCLE lamp DS4.
e. Lamp Test Circuit. This circuit consists of LAMP TEST pushbutton switch S5 and diode network R14
and R16 through R20. When S5 is depressed, +28 volts dc is applied in parallel through the diode network to all lamps in indicator lamp assemblies Al and A2, except lamps DS2 and DS3. These two lamps receive a ground through LAMP TEST switch S5 because they are normally connected to the +28 volts dc input line of the camera test adapter. In any event, all lamps of indicator lamp assemblies Al and A 2 should illuminate when LAMP TEST pushbutton switch S5 is depressed. Power lamp DS1 is not a part of the lamp test circuit.
f. Test Point Circuits. Three binding post test points are provided on the front panel of the camera test adapter. One test point (J5) (black) is a common ground (COMMON) connection while the two remaining test points (J3 and J4) (red) permit measurement of signal circuits in the camera which are not accessible without disassembling the camera Test point J3 (EXPOSURE) is used to measure the error input to the exposure circuit in the camera lens cone assembly. Test: point J 4 (-TACH) is used to measure the negative tach (generator) output voltage in the camera body.

Section II. CAMERA ANALYZER STAGE ANALYSIS

2-4. Camera Analyzer Power Distribu-

 tion.(fig. 2-2

When POWER switch S7 is set to ON, primary power is applied to the camera analyzer. $115 \mathrm{VAC}, 400 \mathrm{HZ}$ power is applied through POWER connector J1, pin A, AC fuse F1, and one section of POWER switch S7 to AC POWER indicators DS1 and DS2 to illuminate these lamps; MASTER switch S1 for rerouting to connectors J1, J6, J9 and J11; and to transformer T1. The secondary windings of transformer T1 supply power to the $\mathrm{E} \mathrm{V} / \mathrm{H}$ simulator circuit and the photocell output simulator circuit. +28 volts dc power is applied through POWER connector J1, pin J, DC fuse F2, and another section of POWER switch S7 to DC POWER indicators DS3 and DS4 to illuminate these lamps, to MASTER switch S1 to actuate one of the three test sections of the camera analyzer, and to LAMP TEST switch S6.

NOTE

The camera analyzer electronic circuit functions when testing LA-406A modules are described in paragraphs 2-5, 2-6, and 2-7.

2-5. LA-406A Intervalometer Module Test Circuits. (fig FO-2)

The camera analyzer electronic circuit functions when
performing tests on the intervalometer module of the LA-406A for each of the six INTVL positions of MODULE TEST switch S1 are described in the following subparagraphs. Tests which are conducted are: R9 BAL, R7 BAL, OPR, + 40VDC, - 40VDC, and TP3.
a. Power Application. When MASTER switch S1 (MASTER section) is set to CONTROL PWR SUPPLY, 115 volts, 400 Hz is applied through section G-Y and +28 volts dc is applied through section G-X of S1 to the intervalometer module.
b. R9BAL. When MODULE TEST switch (CONTROLPOWER SUPPLY section) S1 is set to R9BAL, the following circuit functions are completed:
(1) Intervalometer dc power (+28 volts dc through a thermistor in the intervalometer module) is applied to intervalometer indicator driver Q17 to for-ward-bias the driver into conduction. The driver, in turn, applies ground to MODULE INTVL indicator DS3 lighting the lamp. This ground also is applied through section A of MODULE TEST switch S1 and section C-X of MASTER switch E1 to DC VOLTS indicators DS3 and DS4, lighting these lamps.
(2) Circuit ground is applied through section E of MODULE TEST switch S1, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch S1 to DC VOLTS GRD connector J19.
(3) Clip input from the intervalometer module is routed through section G of MODULE TEST switch S1, normally closed contacts 4-6 of relay K3, section F-X of MASTER switch S1 and resistor R13 to DC

Figure 2-2. Camera analyzer, power distribution.

VOLTS INPUT connector J18.
(4) Intervalometer test point 3 is routed through section J. of MODULE TEST switch S1 to intervalometer test point 1.
(5) Circuit ground is applied through section L of MODULE TEST switch S1 to the E V/H input of the intervalometer module.
(6) Zener diode CR1.15 (33V) is connected through section K of MODULE TEST switch S1 to test point 2 of the intervalometer module.
c. R7BAL. When MODULE TEST switch S1 is set to R7BAL, the following circuit functions are completed:
(1) Intervalometer dc power (+28 volts dc through a thermistor in the intervalometer module) is applied to intervalometer indicator 'driver Q17 to for-ward-bias the driver into conduction. The driver, in turn, applies ground to MODULE INTVL indicator DS3, lighting the lamp. This ground is also applied through section A of MODULE TEST switch S1 and section C-X of MASTER switch S1 to DC VOLTS indicators DS3 and DS4, lighting these lamps.
(2) Circuit ground is applied through section E of MODULE TEST switch S1, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch S1 to DC VOLTS GRD connector J19.
(3) Clip input is routed through section G of MODULE TEST switch S1, normally closed contacts 4-6 of relay K3, section F-X of MASTER switch S1 and resistor R13 to DC VOLTS INPUT connector J18.
(4) Intervalometer test point 3 is routed through
section J of MODULE TEST switch S1 to intervalometer test point 1.
(5) Zener diode R115 (33V) is connected through section K of MODULE TEST switch S1 to intervalometer test point 2.
a. OPP. When MODULE TEST switch S 1 is set to OPR, the following circuit functions are completed:
(1) Intervalometer dc power (+28 volts dc through a thermistor in the intervalometer module) is applied to intervalometer indicator driver Q17 to for-ward-bias the driver into conduction. The driver in turn, applies ground to MODULE INTVL indicator DS3 lighting the lamp. This ground is also applied through section A of MODULE TEST switch S1, and section B-Y of MASTER switch Sl to SCOPE indicator DS1, through section A-X of MASTER switch Sl to COUNTER WIDTH indicator DS3, and through switch A-Y of MASTER switch Al to COUNTER INTVL indicator DS4, lighting these lamps.
(2) Ground is applied through section F of MODULE TEST switch S1, and normally closed contacts 14-8 of relay K3 to SCOPE GRD connector J20.
(3) An intervalometer pulse input is applied through section I-I of MODULE TEST switch Sl, normally closed contacts $10-12$ of relay K3, section II-Y of MASTER switch Sl , and resistor R14 to SCOPE VERT connector J21. The intervalometer pulse also is applied to INTERVAL PULSE indicators DSI and DS2, lighting these lamps for each pulse input and through section D-X of MASTER switch S 1 and resistor R12 to PULSE TIMER PULSE connector J12.

Ground for PULSE TIMER GRD connector J13 is sup plied directly from the camera analyzer.
(4) The E V/H simulator circuit provides an output through section L of MODULE TEST switch Sl directly, and also through capacitor C 3 , to the intervalometer module.
e. +40 VDC . When MODULE TEST switch Sl is sot to +40 VDC , the following circuit functions are completed:
(1) Intervalometer dc power (+28 volts dc through a thermistor in the intervalometer module) is applied to intervalometer indicator driver Q17 to forward bias the driver into conduction. The driver, in turn, applies ground to MODULE INTVL indicator DS3, lighting the lamp. This ground is also applied through section C-X of MASTER switch Al to DC VOLTS indicators DS3 and DS4 and through section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting these lamps.
(2) Circuit ground is applied through section E of MODULE TEST switch S1, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
(3) Ground is also applied through section F of MODULE TEST switch Sl and nomally closed contacts 14-8 of relay K3 to SCOPE GRD connector J20.
(4) Intervalometer test point 2 is routed through section G of MODULE TEST switch S1, normally closed contacts 4-6 of relay K3, and section F-X of MASTER switch S1 to DC VOLTS INPUT connector J18.
(5) Intervalometer test point 2 is also routed through section H of MODULE TEST switch Sl, normally closed contacts $10-12$, of relay K3, section $\mathrm{H}-\mathrm{Y}$ of MASTER switch Sl , and resistor R14 to SCOPE VERT connector J21,
(6) The E V/H simulator circuit provides an output through section L of MODULE TEST switch Sl directly, and also through capacitor C3, to the intervalometer module.
f. -4OVDC. When MODULE TEST switch Sl is set to -4 OVDC , the following circuit functions are completed:
(1) Intervalometer dc power (+28 volts dc through a thermistor in the intervalometer module) is applied to intervalometer indicator driver Q17 to for-ward-bias the driver into conduction. The driver, in turn, applies ground to MODULE INTVL indicator DS3, lighting the lamp. This ground is also applied through section A of MODULE TEST switch Sl and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, and through section A of MODULE TEST switch Sl and section B-Y of MASTER switch S1 to SCOPE indicator DSl, lighting these lamps.
(2) Ground is applied through section E of MODULE TEST switch S1, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
(3) Ground is also applied through section F of MODULE TEST switch Sl , and normally closed contacts 14-8 of relay K3, to SCOPE GRD connector J20.
(4) Intervalometer test point 1 is routed through section G of MODULE TEST switch Sl, normally closed contacts $4-6$ of relay K3, and section F-X of MASTER switch Sl to DC VOLTS INPUT connector J18. Intervalometer test point 1 is also routed through section H of MODULE TEST switch Sl , normally closed contacts $10-12$ of relay K 3 , and section $\mathrm{H}-\mathrm{Y}$ of MASTER switch Sl to SCOPE VERT connector J21.
(5) The E V/H simulator circuit provides an output through section L of MODULE TEST switch Sl directly, and also through capacitor C3, to the intervalometer module.
g. TP3. When MODULE TEST switch Sl is set to TP3, the following circuit functions are completed:
(1) Intervalometer dc power (+28 volts dc through a thermistor in the intervalometer module) is applied to intervalometer indicator driver Q17 to forward bias the driver into conduction The driver, in turn, applies ground to MODULE INTVL indicator DS3 lighting the lamp. This ground is also applied through section A of MODULE TEST switch Sl and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, and through section A of MODULE TEST switch Sl and section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting these lamps.
(2) Ground is applied through section E of MODULE TEST switch Sl, normally closed contacts 1.3-2 of relay K3, and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
(3) Ground is also applied through section F of MODULE TEST switch Sl, and normally closed contacts 14-8 of relay K3 to SCOPE GRD connector J20.
(4) Intervalometer test point 3 is routed through section G of MODULE TEST switch Sl, normally dosed contacts 4-6 of relay K3, and section F-X of MASTER switch Sl to DC VOLTS INPUT connector J18.
(5) Intervalometer test point 3 is also routed through section H of MODULE TEST switch Sl , normally closed contacts $10-12$ of relay K3, section $\mathrm{H}-\mathrm{Y}$ of MASTER switch Sl , and resistor R14 to SCOPE VERT connector J21.
(6) The E V/H simulator circuit provides an output through section L of MODULE TEST switch S1 directly, and also through capacitor C3 to the intervalometer module.

2-6. LA-406A Film Drive Amplifier Test Circuits
(fig. FO-3)

The camera analyzer electronic circuit functions, when performing tests on the LA-406A film drive amplifier module for each of the six FDA positions of MODULE TEST switch S1 are described in the following subparngraphs. Tests which are conducted are: R13ADJ, $\mathrm{R9ADJ}, 0 \mathrm{PR},+6 \mathrm{VDC},-6 \mathrm{VDC}$, and TP2.
a. Power Appication. When MASTER SWITCH Sl (MASTER section) is set to CONTROL PWR SUPPLY, : 15 volts, 400 Hz is applied through section G-Y of Sl switch to the film drive amplifier module. +28 volts dc is applied through section G-X of Sl to the film drive amplifier module.
b. R13ADJ. When MODULE TEST switch Sl (CONTROL-POWER SUPPLY section) is set to R13ADJ, the following circuit functions are completed:
(1) Film drive amplifier dc power (+28 volts dc through a thermistor in the film drive amphlifier module) is applied to film drive indicator driver Q16 to forward-bias the driver into conduction. The driver, in turn, applies ground to FILM DRIVE indicator DS4, lighting the lamp. This ground is also applied through section B of MODULE TEST switch Sl and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, righting these lamps.
(2) A ground is applied through section C of MODULE TEST switch Sl to the E V/H input of the film drive amphlifier.
(3) Input + and - film drive is applied to the motor tachometer simulator circuit, and its -tachometer feedback output is applied through OPERATE OFF switch S15 to the film drive amplifier.
(4) The - film drive input is also routed through section E of MODULE TEST switch Sl, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
(5) The + film drive input is also routed through section \mathbf{G} of MODULE TEST switch Sl, normally closed contacts 4-6 of relay K3, Section F-X of MASTER switch Sl, and resister R13 to DC VOLTS INPUT connector J18.
c. R9ADJ. When MODULE TEST switch S1 is set to R9ADJ, the following circuit functions are completed
(1) Film drive amplifier dc power (+ 28 volts dc through a thermistor in the film drive amplifier module) is applied to film drive indicator driver Q16 to forward-bias the driver into conduction. This applies ground to FILM DRIVE indicator DS4 lighting the lamp. This ground is also applied through section B of MODULE TEST switch S 1 and section $\mathrm{C}-\mathrm{X}$ of MASTER switch Sl to DC VOLTS indicators DS3 and

DS4 lighting the lamps.
(2) Ground is applied to the -tachometer feedback input of the film drive amplifier through section C of MODULE TEST switch Sl and OPERATE OFF switch S15.
(3) Input + film drive is routed through section G of MODULE TEST switch Sl, normally closed contacts 4-6 of relay K3, section F-X of MASTER switch S1, and resistor R13 to DC VOLTS INPUT connector J18.
(4) Input - film drive is routed through section E of MODULE TEST switch Sl , normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
d. OPR. When MODULE TEST switch Sl is set to OPR, the following circuit functions are completed:
(1) Film drive amplifier dc power (+28 volts dc through a thermistor is the film drive amplifier module) is applied to film drive indicator driver Q16 to forward-bias the driver into conduction. This applies ground to FILM DRIVE indicator S4 lighting the lamp. This ground is also applied through section B of MODULE TEST switch Sl and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, and through section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting these lamps.
(2) The output of the E V/H simulator circuit is routed through section D of MODULE TEST switch S1 to the film drive amplifier.
(3) Input - film drive is routed through section E of MODULE TEST switch Sl , normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch S1 to DC VOLTS GRD connector J19.
(4) Input + and - film drive is applied to the motor tachometer simulator circuit, and its output is routed through OPERATE OFF switch S15 to the tachometer feedback input of the film drive amplifier module.
(5) The - tachometer feedback signal is also routed from OPERATE OFF switch S15 through PLUS OUTPUT switch S14, section G of MODULE TEST switch Sl, normally closed contacts 4-6 of relay K3, and section F-X of MASTER switch Sl to DC VOLTS INPUT connector J18.
(6) The - film drive input is also routed through section F of MODULE TEST switch Sl. normally closed contacts 14-8 of relay K3 to SCOPE GRD connector J20
(7) The + film drive input is also routed through section H of MODULE TEST switch Sl , normally closed contacts 10-12 of relay K3, and section H-Y of MASTER switch S1 to SCOPE VERT connector J21.
$e .+6 \mathrm{VDC}$. When MODULE TEST switch S 1 is set to +6 VDC , the following circuit functions are completed:
(1) Film dxive amplifier dc power (+28 volts dc
through a thermistor in the film drive: amplifier module) is applied to film drive indicator driver Q16 to forward bias the driver into conduction. This applies ground to FILM DRIVE indicator DS4, lighting the lamp. This ground is also applied through section B of MODULE TEST switch Sl and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, and through section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting these lamps.
(2) The output of the $\mathrm{E} \mathrm{V} / \mathrm{H}$ simulator circuit is applied through section D of MODULE TEST switch Sl to the film drive amplifier module.
(3) Input - film drive is routed through section E of MODULE TEST switch Sl, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch S1 to DC VOLTS GRD connector J19.
(4) Input - film drive is also routed through section F of MODULE TEST switch Sl , and normally closed contacts 14-8 of relay K3 to SCOPE GRD connecter J20.
(5) Film drive amplifier test point 3 is routed through section G of MODULE TEST switch Sl, normally closed contacts 4-6 of relay K3, section F-X of MASTER switch Sl , and resistor R13 to DC VOLTS INPUT connector J18.
(6) Test point 3 is also routed through section B of MODULE TEST switch Sl, normally closed contacts 10-12 of relay K3, section $\mathrm{H}-\mathrm{Y}$ of MASTER switch Sl, and resistor R14 to SCOPE VERT connector J21.
f. -6VDC. When MODULE TEST switch Sl is set to -6VDC, the following circuit functions are completed:
(1) Film drive amplifier dc power (+ 28 volts dc through a thermistor in the film drive amplifier module) is applied to film drive indicator driver Q16 to forward bias the driver into conduction This applies ground to FILM DRIVE indicator DS4 and the lamp lights. The ground is also applied through section B of MODULE TEST switch S1 and section C-X of MASTER switch S1 to DC VOLTS indicators DS3 and DS4 and through section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting these lamps
(2) The output of the E V/H simulator circuit is routed through section D of MODULE TEST switch Sl to the film drive amplifier module.
(3) -Film drive is routed through section E of MODULE TEST switch Sl, normally closed contacts 13-2 of relay K3, and section F-Y of MASTER switch S1 to DC VOLTS GRD connector J19.
(4) -Film drive is also routed through section F of MODULE TEST switch Sl and normally closed contacts $14-8$ of relay K3 to SCOPE GRD connector J20.
(5) Film drive amplifier test point 4 is routed through section G of MODULE TEST switch Sl, normally closed contacts $4-6$ of relay K3 and section F-X of MASTER switch Sl to DC VOLTS INPUT con-
nector J18.
(6) Test point 4 is also routed through section H of MODULE TEST switch Sl , normally cl ssed contacts 10-12 of relay K 3 , and section $\mathrm{H}-\mathrm{Y}$ of MASTER switch S1 to SCOPE VERT connector J21.
g. TP2. When MODULE TEST switch Sl is set to TP2, the following circuit functions are completed
(1) Film drive amplifier dc power (+ 28 volts dc through a thermistor in the film drive amplifier module) is applied to film drive indicator driver Q16 to forward bias the driver into conduction. This applies ground to FILM DRIVE indicator DS4, lighting the lamp. This ground is also applied through section B of MODULE TEST switch Sl and section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting the lamp.
(2) The output of the E V/H simulator circuit is applied through section D of MODULE TEST switch Sl to the film drive amplifier module.
(3) -Film drive is routed through section F of MODULE TEST switch Sl and normally closed contacts 14-8 of relay K3 to SCOPE GRD connector J20.
(4) Test point 2 of the film drive amplifier module is routed through section H of MODULE TEST switch Sl , normally-closed contacts $10-12$ of relay K3, and section H-Y of MASTER switch Sl to SCOPE VERT connector J21.

> 2-7. LA-406A PC Board and Component Assembly Module Test Circuits
(fig. FO-4)

The camera analyzer electronic circuit functions when performing tests on the PC board component assembly module for each of the two AUX BD positions of TEST switch S 2 are described in the following subparagraphs. Tests which are conducted include all of the CONFIGURATION switch S3 positions for each AUX BD position of TEST switch S2.
a Power Application. When MASTER switch Sl is set to CONTROL PWR SUPPLY, +28 volts dc is applied through section G-X of Sl to the PC board and component assembly module.
b. INTVL-AUX BD. When TEST switch S2 is set to INTVL AUX BD, the following circuit functions are completed:
(1) Circuit ground is routed through section A of TEST switch S2 and section E-X of MASTER switch Sl to R/C BRDG indicators DS1 and DS2, lighting the lamps, and to section A of CONFIGURATION switch S3, whose function for PC board and component assembly tests is described in d through m below.
(2) IntervalometerE V/H input is routed through section C of TEST switch S2 and section E-Y of MASTER switch Sl to R/C BRDG + connector J16.
c. FDA AUX BD. When TEST switch S2 is set to FDA AUX BD, the following circuit functions are com-
pleted
(1) Circuit ground is routed through section A of TEST switch S2 and section E-X of MASTER switch S1 to R/C BRDG indicators DS1 and DS2 lighting the lamps and to R/C BRDG - connector J17. The ground is also applied through section A of TEST switch S2 to section A of CONFIGURATION switch S3, whose function for PC board and component assembly module tests is described in d through m below.
(2) Film drive amplifier E V/H input is routed through section C of TEST S2 and section E-Y of MASTER switch Sl to R/C GRDG + connector J16.
d. 44MM VERT. When CONFIGURATION switch S3 is set to 44 mm VERT, the following circuit functions are completed.
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 to the 44 mm length ground input of the PC beard and component assembly module.
(2) A mount vertical reference volts ground input is applied to input 14 of NOR gate Al. A vertical doors open ground input is applied to input 1 of NOR gate Al. A positive (logic 1) input is present at input 8 of NOR gate Al, whose output 5 is a ground (logic 0) to input 2 of NOR gate Al. As a result, NOR gate Al develops a positive (logic 1) output which forward-biases vertical position indicator driver Q13, which in turn conducts to apply a ground to VERT POS indicator DS3, lighting the lamp.
e. 3 in. $15^{\circ} \mathrm{R}$. When CONFIGURATION switch S3 is set to $3 \mathrm{IN} .15^{\circ} \mathrm{R}$, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S 2 is routed through section A of CONFIGUATION switch S3 to' the mount swing 15° right input, and also the 3 -inch focal length ground input of the PC board and component assembly module.
(2) A right door open ground input is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 15° right reference volts ground input is routed through section C of CON FIGURATION switch S3 to input 12 of NOR gate Al. A 15° relays ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, NOR gate Al develops a positive (logic 1) output 9 to forward-bias relay operate indicator driver Q14 which, in turn conducts to apply a ground to RELAY OPR indicator DS4, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DSl , lighting the lamp.
f. 3 IN. 30° R. When CONFIGURATION switch S3 is set to $3 \mathrm{IN} .30^{\circ} \mathrm{R}$, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGUR-

ATION switch S 3 as mount swing 30° right, and 3inch focal length ground inputs to the PC board and component assembly module.
(2) A right door open ground input is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 30° right reference volts ground input is routed through section C of CONFIGURATION switch S3 to input 12 of NOR gate Al. A 30° relays ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, the gate develops a positive (logic 1) at output 9 to forward-bias relay operate indicator driver Q14 which, in turn conducts to apply ground to RELAY OPR indicator DS4, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DSl, lighting the lamp.
g. 3 IN VERT. When CONFIGURATION switch S3 is set to 3 IN . VERT, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 to the 3-inch focal length ground input of the PC board and component assembly module.
(2) A mount vertical reference volts ground input is applied to input 14 of NOR gate Al. A vertical doors open ground input is applied to input 1 of NOR gate Al. A positive (logic 1) input is present at input 8 of NOR gate Al, whose output 5 is a ground (logic 0) to input 2 of NOR gate Al. As a result, NOR gate Al de velops a positive (logic 1) output which forward-biases vertical position indicator driver Q13, which in turn, conducts to apply a ground to VERT POS indicator DS3, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DSl , lighting the lamp.
h. $6 \mathrm{IN} .15^{\circ}$ L. When CONFIGURATION switch S3 is set to $6 \mathrm{IN} .15^{\circ} \mathrm{L}$, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 to the mount switch 15° left ground input of the auxiliary board module.
(2) A left door open ground input is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 15° left reference volts ground input is routed through section C of CON FIGURATION switch A3 to input 12 of NOR gate A1. A 15° relays ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, the gate develops a positive (logic 1) output 9 to forward-bias relay operate indicator driver Q14 which, in turn, conducts to apply a ground to RELAY OPR indicator DS4, lighting the lamp.
(3) Ground in applied to MOUNT AC indicator DS1, lighting the lamp.
i. 6 IN. 30° L. When CONFIGURATION switch A3
is set to $6 \mathrm{IN} .30^{\circ} \mathrm{L}$, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 to the mount switch 30° left input of the PC board and component assembly module
(2) A left door open ground input is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 30° left reference volts ground input is routed through section C of CON FIGURATION switch A3 to input 12 of NOR gate Al. A 30° relays ground input is routed through section D of CONFIGURATION switch A3 to input of NOR gate Al. As a result, the gate develops a positive (logic 1) at output 9 to forward-bias relay operate indicator driver Q14 which, in turn, conducts to apply a ground to RELAY OPR indicator DS4, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DS1, lighting the lamp.
j. 6 IN . VERT. A mount vertical reference volts ground input is applied to input 14 of NOR gate Al. A vertical doors open ground input is applied to input 1 of NOR gate Al. A positive (logic 1) input is present at input 8 of NOR gate Al , whose output 5 is ground (logic 0) to input 2 of NOR gate Al. As a result, NOR gate Al develops a positive (logic 1) output which for-ward-biases vertical position indicator driver Q13, which in turn, conducts to supply a ground to VERT POS indicator DS3, lighting the lamp.
k. $12 \mathrm{IN} .15^{\circ}$ L. When CONFIGURATION switch S 3 is set to $12 \mathrm{IN} .15^{\circ} \mathrm{L}$, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S2 is-routed through section A of CONFIGURATION switch S3 to the mount switch 15° left and 12inch focal length ground inputs of the PC board and component assembly module.
(2) A left door open ground input is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 15° left reference volts ground input is routed through C of CONFIGURATION switch A3 to input 12 of NOR gate Al. A 15° relays ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate A1. As a result, the gate develops a positive (logic 1) output9 to forward-bias relay operate indicator driver Q14 which, in turn conducts to apply a ground to RELAY OPR indicator DS4, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DSI lighting the lamp.
I $12 \mathrm{IN} 30^{\circ} \mathrm{L}$. When CONFIGURATION switch S3 is set to $12 \mathrm{IN} .30^{\circ} \mathrm{L}$, the following circuit functions are completed:
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGUR-

ATION switch S3 to the mount switch 30° left and 12inch focal length ground inputs of the PC board and component assembly module.
(2) A left door open ground input is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 30° left reference volts ground input is routed through section C of CONFIGURATION switch A3 to input 12 of NOR gate Al. A 30° relays ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, the gate develops a positive (logic 1) output 9 to forward-bias relay operate indicator driver Q14 which, in turn conducts to apply ground to RELAY OPER indicator DS4, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DSl , lighting the lamp.
m. 12 IN. VERT. When CONFIGURATION switch S3 is set to 12 IN. VERT, the following circuits are completed:
(1) The ground applied through section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 to the 12-inch focal length ground input of the PC board and component assembly module
(2) A mount vertical reference volts ground input is applied to input 14 of NOR gate Al. A vertical doors open ground input is applied to input 1 of NOR gate Al. A positive (logic 1) input is present at input 8 of NOR gate Al, whose output 5 is a ground (logic 0) to input 2 of NOR gate Al. As a result, NOR gate Al develops a positive (logic 1) output which forward-biases vertical position indicator driver Q13, which in turn, conducts to apply a ground to VERT POS indicator DS3, lighting the lamp.
(3) Ground is applied to MOUNT AC indicator DS1, lighting the lamp.

2-8. LA-406A Test Circuits (fig. FO-5)

The camera analyzer electronic circuit functions when performing LA-406A tests for each SYSTEM position of TEST switch S2 are described in the following sub paragraphs. Tests which are conducted are: RDY GRD OFF, RDY GRD ON, OPERATE, MAN PIC, NIGHT FLASH, AND FLASH RDY.
a Power Application. When MASTER switch Sl is set to CONTROL PWR SUPPLY, 115 volts, 100 Hz is applied through section G-Y of Sl and +28 volts dc is applied through section G-X of Sl to the LA-406A.
b. RDY GRD OFF. When TEST switch S2 is set to RDY GRD OFF, the following circuit functions, although these are not considered during actual testing of the LA-406A, are completed.
(1) Cable interlock ground is routed through section C-X of MASTER switch Sl to DC VOLTS indica-
tors DS3 and DS4, lighting the lamps. This ground is also applied through section B-Y of MASTER switch Sl to SCOPE indicator DSl, through section A-X of MASTER switch Sl to WIDTH indicators DS3, and also through section A-Y of MASTER switch Sl to INTVL indicator DS4, lighting these lamps
(2) Flash trigger 1 ground is applied to rely K3, and the relay is energized.
(3) Circuit ground is routed through normally open contacts 3-2 of relay A16K3 and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19, and through normally open contacts 9-8 of relay K3 to SCOPE GRD connector J20. Circuit ground is routed through OPERATE OFF switch Sl 5 as an operate ground input to the LA-406A.
(4) The output of the E V/H simulator circuit is applied to the LA-406A.
C. RDY GRD ON. When TEST switch S2 is set to RDY GRD ON, the following circuit functions are completed:
(1) Cable interlock ground is routed through section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, through section B-Y of MASTER switch Sl to SCOPE indicator DS1, through section A-X of MASTER switch to WIDTH indicator DS3, and also through section A-Y of MASTER switch Sl to INTVL indicator DS4, lighting these lamps
(2) Flash trigger 1 ground is applied to relay K3, and the relay is energized.
(3) Circuit ground is routed through normally open contacts 3-2 of relay K3 and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19, and through normally open contacts 9-8 of relay K3 to SCOPE GRD connector J20.
(4) Film drive is supplied from the control-power supply to the motor tachometer simulator circuit, whose - tachometer feedback output is routed through OPERATE OFF switch S15 to the control-power sup ply, and also from the OPERATE OFF switch S15 through PLUS OUTPUT switch S14, normally open contacts 5-6 of relay K3, section F-X of MASTER switch Sl. and resistor R13 to DC VOLTS INPUT connector J18. Depressing OPERATE OFF switch S14 disconnects the -tachometer feedback output of the motor tachometer simulator circuit from both the input to the control-power supply and DC VOLTS INPUT connector J18 and, in addition, the operate ground to the LA-406A. Depressing PLUS OUTPUT switch S14 disconnects the - tachometer feedback output of the motor tachometer simulator circuit from DC VOLTS INPUT connector J18, and routes a portion of the + film drive input of the LA-406A through normally open contacts 5-6 of relay K3, section F-X of MASTER switch Sl , and resistor R13 to the DC VOLTS INPUT connector J18.
(5) Camera +28 volts dc is applied to CAMR 28 V
indicator DS3, lighting the lamp.
(6) Scanner 115 volts, 400 Hz is applied to AC (1) indicator DS4, lighting the lamp.
(7) Scanner 115 volts, 400 Hz is applied to AC @A indicator DS2, lighting the lamp.
(8) Ground is applied to MOUNT AC indicator DSl, lighting the lamp.
(9) A cycle pulse input from the LA-406A is applied to INTVL PULSE indicator DSl to pulse the lamp, and through normally open contacts 11-12 of relay K3, section II-Y of MASTER switch S1, and resistor R14 to SCOPE VERT connector J21. The cycle pulse input is also routed through section D-X of MASTER switch Sl , and resistor R12 to PULSE TIMER PULSE connector J12. Circuit ground is present at PULSE TIMER GRD connector J13.
(10) The output of the E V/H simulator circuit is applied to the LA-406A.
(11) Circuit ground is routed through section A of TEST switch S 2 as a ready ground input to the LA-406A.
d. OPERATE. When TEST switch S 2 is set to OPERATE, the following circuit functions are completed:
(1) Circuit ground is routed through section A of TEST switch S2 as a cable interlock input, a mount ready ground input a doors open input, and a ready ground input to the control-power supply, and also to section A of CONFIGURATION switch S3. Subparagraphs (2) through (11) below describe circuit functions completed for each position of CONFIGURATION switch S3.
(2) When CONFIGURATION switch S3 is set to 44MM VERT, the circuit ground from section A of TEST switch S2 and section A of CONFIGURATION switch S3 is applied as a 44 mm focal length ground input to the LA-406A. A vertical door open ground input is applied to input 1 of NOR gate Al. A mount vertical reference volts ground input is applied to input 14 of NOR gate Al. A positive (logic 1) input is present at input 8 of NOR gate Al, whose output 5 is a ground (logic 0) at input 2 of NOR gate Al . As a result, the gate develops a positive (logic 1) output to vertical position indicator driver Q13, which conducts to apply a ground to VERT POS indicator DS3, lighting the lamp.
(3) When CONFIGURATION switch S3 is set to 3 IN. $15^{\circ} \mathrm{R}$, the circuit ground from section A of TEST switch S 2 is routed through section A of CONFIGURATION switch S3 as a 3-inch focal length ground and a mount swing 15° right ground input to the LA-406A. A right door open ground is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 15° right reference volts ground input is routed through section C of CONFIGURATION switch S3 to input 12 of NOR gate Al. A data request N.C. ground input is routed through section D of

CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, NOR gate Al develop a positive output (logic 1) which forward-biases relay operate indicator driver Q14. The indicator driver, in turn, supplies a ground to RELAY OPR indicator DS4, lighting the lamp.
(4) When CONFIGURATION switch S3 is set to 3 IN. $30^{\circ} \mathrm{R}$, the circuit ground from section A of TEST switch S 2 is routed through section A of CONFIGURATION switch S3 as a mount swing 30° right and a 3inch focal length ground input to the control-power supply. A right door open ground is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 30° right reference volts ground is routed through section C of CONFIGURATION switch S3 to input 12 of NOR gate Al. A data request common ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, a positive (logic 1) output is developed at output 9 of the gate which forward-biases relay operate indicator driver Q14. The driver, in turn, supplies a ground to RELAY OPR indicator DS4, lighting the lamp.
(5) When CONFIGURATION switch S3 is set to 3 IN. VERT, the circuit ground from section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 as a 3-inch focal length ground output to the LA-406A. Following this, NOR gate Al operates as described in (2) above to produce a positive (logic 1) output at its pin 3 which enables VERT POS indicator lamp DS3 to light
(6) When CONFIGURATION switch S3 is set to 6 IN. $15^{\circ} \mathrm{L}$, the circuit ground from section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 as a mount swing 15° left ground input to the LA-406A. A left door open ground input is applied through section B of CONFIGURATION switch S3 as input 10 of NOR gate Al. A mount 15° left reference volts ground input is routed through section C of CONFIGURATION switch S3 to input 12 of NOR gate A1. A data request ground is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate Al. As a result, the gate de velops a positive (logic 1) output to relay operate indicate driver Q14, which forward-biases the driver into conduction to apply ground to RELAY OPR indicator DS4, lighting the lamp.
(7) When CONFIGURATION switch S3 is set to 6 IN. $30^{\circ} \mathrm{L}$, the circuit ground from section A of TEST switch S 2 is routed through section A of CONFIGURATION switch S3 as a mount swing 30° left ground input to the control-power supply. A left door open ground is routed through section B of CONFIGURATION switch S3 to input 10 of NOR gate Al. A mount 30° left reference volts ground input is routed through section C of CONFIGURATION switch S3 to
input 12 of NOR gate Al. A data request common ground input is routed through section D of CONFIGURATION switch S3 to input 13 of NOR gate A1. As a result, the gate develops a positive (logic 1) output to relay operate indicator driver Q14, which forwardbiases the driver into conduction to apply ground to RELAY OPR indicator DS4, lighting the lamp.
(8) When CONFIGURATION switch S3 is set to 6 IN. VERT, NOR gate Al operates as described in (2) above to produce a positive (logic 1) output at its pin 3 which enables VERT POS indicator lamp DS3 to light.
(9) When CONFIGURATION switch S3 is set to $12 \mathrm{IN} .15^{\circ} \mathrm{L}$, the circuit ground from section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 as mount swing 15° left and 12 -inch focal length ground inputs to the LA-406A. Following this, NOR gate Al operates as described in (6) above to produce a positive (logic 1) output at its pin 9 which enables RELAY OPR indicator lamp DS4 to light.
(10) When CONFIGURATION switch S 3 is set to $12 \mathrm{IN} .30^{\circ} \mathrm{L}$, the circuit ground from section A of TEST switch S2 is routed through section A of CONFIGURATION switch S3 as a 12 -inch focal length ground and a mount swing 30° left ground input to the LA-406A. Following this, NOR gate Al operates as described in (7) above to produce a positive (logic 1) output at its pin 9 which enables RELAY OPR indicator lamp DS4 to light
(11) When CONFIGURATION switch S3 is set to 12 IN. VERT, the circuit ground from section A of TEST switch S 2 is routed through section A of CONFIGURATION switch S3 as a 12 -inch focal length ground input to the LA-406A. A vertical doors open ground input is applied at input 1 of NOR gate Al. A mount vertical reference volts ground input is applied at input 14 of NOR gate Al. A positive (logic 1) input is present at input 8 of NOR gate Al, whose output 5 is a ground (logic 0) at input 2 of NOR gate Al. As a result, the gate develops a positive (logic 1) output to vertical position indicator driver Q13, which conducts to apply a ground to VERT POS indicator DS3, light ing the lamp.
(12) +28 volts dc is routed through section B of TEST switch S2 as a camera 28 VDC interlock input to the LA-406A.
(13) Operate ground is supplied to one side and ready indicate (28 volts dc) is applied to the other side of SYS RDY indicator DSI by the LA-406A, lighting the lamp.
(14) Camera +28 volts dc is applied to CAM 28V indicator DS3, lighting the lamp.
(15) Scanner ØB 115 volts, 400 Hz is applied to AC OB indicator DS4, lighting the lamp.
(16) Scanner ØA 115 volts, 400 Hz is applied to AC ØA indicator DS2, lighting the lamp.
(17) Ground is applied to MOUNT AC indicator DSl lighting the lamp.
(18) Cable interlock ground is routed through section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, lighting the lamps. This ground is also applied through section B-Y of MASTER switch S1 to SCOPE indicator DSl, and through section A-X of MASTER switch Sl to WIDTH indicator DS3, and also through section A-Y of MASTER switch Sl to INTVL indicator DS4, lighting these lamps.
(19) Flash trigger 1 ground is applied to relay K3 and the relay is energized.
(20) Circuit ground is routed through normally open contacts 3-2 of relay K3 and section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
(21) \pm Film drive from the LA-406A is applied to the motor tachometer simulator circuit, and its -tachometer feedback output is routed through OPERATE OFF switch S15 to the LA-406A, and also through PLUS OUTPUT switch S14, normally open contacts 5-6 of relay K3, section F-X of MASTER switch Sl, and resistor R13 to DC VOLTS INPUT connector J18. Depressing OPERATE OFF switch disconnects the output of the motor tachometer simulator circuit from the LA-406A and DC VOLTS INPUT connector J18, and also circuit ground as the operate ground input to the control-power supply. Depressing PLUS OUTPUT switch S14 disconnects the - tachometer feedback signal from the DC VOLTS INPUT connector J18 and connects the + film drive input to the connector.
(22) Ground is routed through normally open contacts 9-8 of relay K3 to SCOPE GRD connector J20.
(23) A cycle pulse input from the LA-406A is routed to INTVL PULSE indicator DSl, lighting the lamp for each pulse. The cycle pulse is also routed through normally open contacts $11-12$ of relay K3, section H-Y of MASTER switch Sl, and resistor R14 to SCOPE VERT connector J21, and through section D-X of MASTER switch S1 and resistor R12 to PULSE TIMER PULSE connector J12. Ground is present at PULSE TIMER GRD connector J13.
(24) The output of the E V/H simulator circuit is applied to the LA-406A.
e. MAN PIC When TEST switch S2 is set to MAN PIC, the following circuit functions are completed.
(1) Circuit ground is routed through section A of TEST switch S2 as a manual picture, mount ready ground, doors open interlock, and ready ground input to the LA-406A.
(2) Operation thereafter is identical to d (12) through (24) above except that circuit ground is removed from the input of manual picture indicator driver Q15, to permit +28 volts dc to forward-bias the driver into conduction which, in turn, places a ground
on MAN PIC indicator DS2, lighting the lamp.
f. NIGHT FLASH. When TEST switch S2 is set to NIGHT FLASH, the following circuit functions are completed
(1) Circuit ground is routed through section A of TEST switch S 2 as a night mode ground, a mount ready ground, a doors open interlock, and a ready ground input to the LA-406A.
(2) Aside from following steps (3) through (5) operation thereafter is identical to $d(12)$ through (24) above.
(3) Flasher 115 volts, 400 Hz is applied to FLASH AC indicator DS2, lighting the lamp.
(4) A night exposure ground is applied to NIGHT EXP indicator, DS3, lighting the lamp.
(5) Flasher +28 volts dc is applied to FLASH DC indicator DS4, lighting the lamp.
g. FLASH RDY. When TEST switch S2 is set to FLASH RDY, the circuit functions are identical to those given for night flash operation (f above) with the single exception that +28 volts dc is routed through section B of TEST switch S2 as both flasher ready and camera +28 volts dc interlocks to the LA-406A.

2-9. Lens Cone S/C Test Circuits (fig. FO-6)

The camera analyzer electronic circuit functions when performing tests on the S/C switch module of the lens cone, are described in the following subparagraphs. Tests which are conducted are S/C A and S/C B.
a. Power Application. When MASTER switch Sl is set to LENS CONES, +28 volts dc is applied through section G-X of the switch to the S/C switch module under test.
8. S/CA. When TEST switch S10 is set to S/C A, the following circuit functions are completed:
(1) S/C resistors A input from the S/C switch module is routed through section A-X of TEST switch S10 and section E-Y of MASTER switch Sl to R/C BRDG + connector J16.
(2) Circuit ground is routed through section A-Y of TEST switch S10 and section E-X of MASTER switch Sl to R/C BRDG indicators DS1 and DS2 which illuminate and also to R/C BRDG - connector J17.
c. S/C B. When TEST switch S10 is set to SIC B, the following circuit functions are completed.
(1) S/C resistors B input from the S/C switch module is routed through section A-X of TEST switch S10 and section E-Y of MASTER switch Sl to R/C BRDG + connector J16.
(2) Circuit ground is routed through section A-Y of TEST switch Sl0 and section E-X of MASTER switch Sl to R/C BRDG indicators DSl and DS2 which illuminate, and to R/C BRDG - connector J17.

2-10. Lens Cone Calibrate Test Circuits (fig. FO-6)

The camera analyzer electronic circuit functionswhen performing calibration tests on the lens cone are de scribed in the following subparagraphs.
a Power Application. When MASTER switch Sl is set to LENS CONES, 115 volts, 400 Hz is applied through section G-Y of the switch and +28 volts dc is applied through section G-X of the switch to the lens cone.
b. CAL. When TEST switch Sl0 is set to CAL, the following circuit functions are completed:
(1) Circuit ground is routed through section A-Y of TEST switch Sl0 and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, lighting the lamps.
(2) The test point input from the lens cone is routed through section B-X of TEST switch Sl0, section F-X MASTER switch Sl, and resistor R13 to DC VOLTS INPUT connector J18.
(3) The output of the simulated exposure feedback circuit is routed through section B-Y of TEST switch S10 as an exposure test point input to the lens cone.
(4) The output of the photocell output simulator circuit is applied through FOOT-LAMBERTS resistor $\mathbb{R A}$ and RANGE switch S11 and an exposure signal innut to the lens cone.
(5) When testing a 44 mm lens cone, a 44 mm focal length ground input is applied to 44 mm indicator DSl, lighting the lamp.
(6) When testing a 3 -inch lens cone, a 3 -inch focal length ground input is applied to 3 IN . indicator DS2, lighting the lamp.
(7) When testing a 12 -inch lens cone, a 12 -inch focal length ground input is applied to 12 IN . indicator DS4, lighting the lamps.
(8) When testing a 6 -inch lens cone, no grounds are present at the 44 mm , 3-inch or 12 -inch focal length inputs; as a result, 6-inch indicator driver Q5 is forward-biased and conducts to apply a ground to 6 IN . indicator DS3, lighting the lamp.
(9) When calibrating the camera analyzer, RANGE switch S 11 is set to the $0-100$ position and the digital voltmeter is nulled by adjusting FOOTLAMBERTS resistor R4. When FOOT-LAMBERTS resistor R4 is increased from the null point by 1.2 footlamberts, a slit width limit common ground input is applied to decrease indicator driver Q9, and +28 volts dc (slit width limit Sl) through the slit width drive motor in the lens cone is also applied to the indicator driver. As a result, the driver is forward-biased into conduction and applies ground to DECR indicator DS4, lighting the lamp. When FOOT-LAMBERTS resister R4 is decreased from the null point by 1.2 foot lamberts, +28 volts dc is applied to INCR indicator DS3, lighting the lamp.

2-11. Lens Cone Operate Test Circuits (fig. FO-6)

The camera analyzer electronic circuit functions when performing operational tests on either the servo drive assembly or the lens cone are described in the following subparagraphs.
a. Power Application. \#en MASTER switch Sl is set to LENS CONES, 115 volts, 400 Hz is applied through section G-Y and +28 volts dc is applied through section G-X of the switch to the lens cone. When operate tests are performed on the servo drive assembly, +28 volts dc is applied through section G-X of the MASTER switch to the servo drive assembly.
b. Servo Drive Assembly OPERATE Test. When TEST switch Sl0 is set to OPERATE when performing tests on the servo drive assembly, the following circuits functions are completed:
(1) A servo drive potentiometer input is routed through section A-X of TEST switch S10 and section E-Y of MASTER switch Sl to R/C BRDG + connector J16.
(2) A cable interlock +28 volts dc input is applied to the base, and circuit ground through section A-Y of TEST switch Sl0 is applied to the emitter of R/C bridge indicator driver Q1 to forward-bias the driver into conduction. The driver, in turn, applies a ground through section E-X of MASTER switch Sl to R/C BRDG indicators DS1 and DS2, lighting the lamps, and to R/C BRDG - connector J17.
(3) Circuit ground is routed through section A-Y of TEST switch S10 and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, lighting the lamps.
(4) When DC EXPOSURE switch S13 is set to INCREASE, circuit ground is routed through one section of LAMP TEST switch S6 and closed contacts of DC EXPOSURE switch S13 to the exposure decrease input of the servo drive assembly; +28 volts dc is routed through another section of S6 and S13 to the exposure increase input of the servo drive assembly.
(5) A slit width limit $\mathrm{S} 1+28$ volts dc input is applied to INCR indicator DS3, and the lamp lights as long as the slit width drive motor is being driven in the increase direction.
(6) When the slit width limit is reached, the +28 volts dc slit width limit Sl input is removed and INCR indicator DS3 extinguishes. A slit width limit S8 ground input is applied to one side, and a +28 volts dc slit width drive motor input is applied to the other side of INCR LIM indicator DS1, lighting the lamp.
(7) When DC EXPOSURE switch S13 is set to DE CREASE, circuit ground is routed through one section of LAMP TEST switch S6 and closed contacts of DC EXPOSURE switch S13 to the exposure increase input of the servo drive assembly; +28 volts dc is routed through another section of S6 and S13 to the exposure
decrease input of the servo drive assembly.
(8) A slit width limit ground input and a +28 volts de slit width limit Sl input through the slit width drive motor is applied to decrease indicator driver Q9 to forward-bias the driver into conduction. As a result, ground is applied to DECR indicator DS4, and the lamp lights as long as the slit width drive motor is being driven in the decrease direction.
(9) When the slit width is reached, the slit width limit ground is removed from Q9 and the lamp extinguishes. The slit width limit $\mathrm{Sl}+28$ volts dc input is routed to the increase/decrease exposure circuit. The circuit develops a -28 volts dc output which is routed through LAMP TEST switch S6 to DECR LIM indicator DS2, lighting the lamp.
c. Lens Cone OPERATE Tests. When TEST switch S10 i. set to OPERATE when performing tests on the lens cone, the following circuit functions are completed:
(1) The exposure test point input from the lens cone is routed through section B-X of TEST switch S10, section F-X of MASTER switch S1, and resistor R13 to DC VOLTS INPUT connector J18.
(2) Circuit ground is routed through section A-Y of TEST switch S10 and section C-X of MASTER switch S1 to DC VOLTS indicators DS3 and DS4, lighting the lamps.
(3) When testing a 44 mm lens cone, a 44 mm focal length interlock ground input from the lens cone is applied to 44 mm indicator DS1, lighting the lamp. The ground is also applied to 6-inch lamp driver Q5, maintaining the driver cutoff to prevent lighting 6 IN . indicator DS3.
(4) When testing a 3 -inch lens cone, 3-inch focal length interlock ground input from the lens cone is applied to 3 IN . indicator DS2, lighting the lamp. The ground also is applied to 6-inch lamp driver Q5, maintaining the driver cutoff to prevent lighting 6 IN. indicator DS3.
(5) When testing a 12 -inch lens cone, a 12 -inch focal length interlock ground input from the lens cone is applied to 12 IN . indicator DS4, lighting the lamp. The ground is also applied to the 6-inch lamp driver Q5, maintaining the driver cutoff to prevent lighting 6 IN, indicator DS3.
(6) When testing a 6 -inch lens cone, no focal length interlock ground inputs are received. Six-inch indicator driver Q5 is forward-biased into conduction by +28 volts dc applied to its base. As a result, the driver applies ground to 6 IN . indicator DS3, lighting the lamp.
(7) The output of the photocell output simulator circuit is applied through FOOT-LA MBERTS resistor R4 and RANGE switch S11 as an exposure signal input to the lens cone.
(8) Circuit ground is routed through LAMP TEST
switch S6 as a +28 volts dc return input to the lens cone.
(9) When EXPOSURE switch S12 is set to OVER, an over exposure ground is applied to the lens cone. As a result, $a+20$ volts dc input from the lens cone is applied to over indicator driver Q6 and under indicator gate Q7. The input forward-biases the driver into conduction to apply a ground to OVER indicators DSl and DS2, lighting the lamps. The input also forward-biases the gate into conduction; as a result, a ground is applied to under indicator driver Q8 in its output to maintain the drive cut off to prevent lighting UNDER indicators DS3 and DS4.
(10) When EXPOSURE switch S 12 is set to UNDER, under exposure ground is applied to the lens cone. As a result, a +5 volts dc input from the lens cone is applied to over indicator driver Q6 and under indicator gate Q7. The input is insufficient to drive either the gate or driver into conduction As a result, OVER indicators DS1 and DS2 extinguish Under indicator driver Q8, however, becomes self-biased into conduction to apply a ground to UNDER indicators DS3 and DS4, lighting the lamps
(11) When EXPOSURE switch S 12 is at the center position, a +10 volts dc input from the lens cone is insufficient to affect driver Q16, but is sufficient enough to forward-bias gate Q7 into conduction to apply ground to driver Q8. The ground maintains the driver in cutoff to prevent lighting UNDER indicators DS3 and DS4.
(12) When DC EXPOSURE switch S13 is set to INCREASE, circuit ground is routed through one section of LAMP TEST switch S6 and the closed contacts of Sl 3 to test point 3 on the lens cone. In addition, +28 volts dc is routed through another section of LAMP TEST switch S6 and the closed contacts of S13 to test point 4 on the lens cone.
(13) A slit width limit $\mathrm{Sl}+27$ volts de input is applied to INCR indicator DS3, and the lamp lights as long as the slit width drive motor is being driven in the increase direction.
(14) When the slit width limit is reached, the +28 volts de slit width limit S 1 input is disconnected and INCR indicator DS3 extinguishes. A slit width limit S8 ground input is applied to one side and a +28 volts dc slit width drive motor input is applied to the other side of INCR LIM indicator DS1, lighting the lamp.
(15) When DC EXPOSURE switch S13 is set to DECREASE, circuit ground is routed through one section of LAMP TEST switch S6 and the closed contacts of S13 to the exposure increase input of the lens cone. In addition, +28 volts dc is routed through another section of LAMP TEST switch S6 and the closed contacts of S13 to the exposure decrease input of the lens cone.
(16) A slit width limit ground input and a +28
volts de slit width limit Sl. input through the slit width drive motor is applied to decrease indicator driver Q9 to forward-bias the driver into conduction. As a result, ground is applied to DECR indicator DS4 and the lamp lights as long as the slit width drive motor is being driven in the decrease direction
(17) When the slit width limit is reached, the slit width limit ground input is disconnected from decrease indicator driver Q9 and the lamp extinguishes. The slit width limit $\mathrm{Sl}+28$ volts dc input is routed to the increase/decrease exposure circuit. This circuit develops a -28 volts dc output which is routed through LAMP TEST switch S6 to DECR LIM indicator DS2, lighting the lamp.

2-12. Lens Cone Photo Sensor Test Circuits (fig. FO-6)

The camera analyzer electronic circuit functions when forming operational tests on the photo sensor are described in the following subparagraphs.
a. Circuit ground is routed through section A-Y of TEST switch S10 and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, lighting the lamps.
b. The output of the photocell output simulator circuit is applied through FOOT-LAMBERTS resistor R4 and RANGE switch S11 as an exposure signal input to the photo sensor, and also through section B-X of TEST switch S10, section F-X of MASTER switch S1, and resistor R13 to DC VOLTS INPUT connector J18.

2-13. Camera Body Test Circuits (fig. FO-7)

The camera analyzer electronic circuit functions when performing tests on the camera body, or the left and right assembly modules, are described in the following subparagraphs. Tests which are conducted on the camera body are: AUTO, PULSE, PULSE IMC, and NIGHT.
a. Power Application. When MASTER switch Sl is set to CAMERA BODY, +28 volts dc is applied through section G-X of the switch to the camera body or the right or left module assembly.
b. AUTO. When MODE switch S5 is set to AUTO, the following circuit functions are completed:
(1) Circuit ground is routed through section C-Y of MODE switch S5 to the junction of three lamp circuits: through section A-X of MASTER switch S1 to WIDTH indicator DS3, lighting the lamp; through section A-Y of MASTER switch S1 to INTVL indicator DS4, lighting the lamp; and through section B-Y of MASTER switch Sl to SCOPE indicator DSl, lighting the lamp.
(2) An auto trip input from the camera body is routed through section $\mathrm{C}-\mathrm{X}$ of MODE switch S 5 to

AUTO TRIP indicator DS2, lighting the lamp.
(3) A cycle pulse input from the LS-36A is routed to CYCLE PULSE switch S2. When S2 is set to AUTO, the cycle pulse input is applied to the junction of three circuits: to CYCLE PULSE indicators DS1 and DS2, lighting the lamps for each cycle pulse received, through section A-Y of MODE switch S 5 as a cycle pulse input to the camera body; through section D-X of Sl and resistor R12 to PULSE TIMER PULSE connector J12 and through section $\mathrm{H}-\mathrm{Y}$ of Sl and resistor R14 to SCOPE VERT connector J21. Placing CYCLE PULSE switch S2 in MANUAL performs the same function as the cycle pulse input from LS-36A.
(4) A shutter trip input from the camera body is applied to the recycle initiate simulator circuit, which develops a recycle initiate ground output to the camera body, and also applies a +28 volts dc pulsed output to RECYCLE INITIATE indicators DS3 and DS4, lighting the lamps.
(5) \pm Film drive from the LS-36A is applied to the camera body.
(6) -Tachometer feedback from the camera body is applied to the system simulator and also routed through section F-X of MASTER switch Sl and resistor R13 to DC VOLTS INPUT connector J18.
(7) When SIM OPR switch S3 is set to ON, circuit ground is applied through the switch to the system simulator and to SIM OPR indicator DS2, lighting the lamp.
(8) When the camera body is operating, a +28 volts dc ready input is applied to BODY RDY indicator DS3, lighting the lamp.
(9) When the camera body operates, a +28 volts dc operate input is applied to BODY OPR indicator DS4, lighting the lamp.
(10) When an exposure reset condition exists, a +28 volts dc exposure reset input is applied to EXP RESET indicator DSl, lighting the lamp.
(11) Should a film failure occur, a +28 volt dc film failure input is applied to FILM FAIL indicator DSl, lighting the lamp.
c. PULSE. When MODE switch S5 is set to PULSE, the following circuit functions are completed:
(1) Circuit ground is routed through section A-X of MODE switch S 5 as a pulse input to the camera body.
(2) Operation thereafter is identical to $b(4)$ through (11) above.
d. PULSE IMC. When MODE switch S5 is set to PULSE IMC, the following circuit functions are completed:
(1) Circuit ground is routed through section A-X of MODE switch S 5 as a pulse input to the camera body.
(2) A shutter trip input from the camera body is applied to the recycle initiate simulator circuit, which
develops a recycle initiate ground output to the camera body and also applies a +28 volts dc pulse output to RECYCLE INITIATE indicators DS3 and DS4, lighting the lamps.
(3) Circuit ground is routed through section $B-X$ of MODE switch S 5 as a pulse input to the camera body.
(4) Circuit ground is routed through section C-Y of MODE swtich S5 and section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, lighting the lamps.
(5) \pm Film drive from the LS-36A is applied to the camera body.
(6) -Tachometer feedback from the camera body is applied to the LS-36A and also routed through section F-X of MASTER switch S1 and resistor R13 to DC VOLTS INPUT connector J18.
(7) When SIM OPR switch S3 is set to ON, circuit ground is applied through the switch to the LS-36A and to SIM OPR indicator DS2, lighting the lamp.
e. NIGHT. When MODE switch S5 is set to NIGHT, the following circuit functions are completed:
(1) Circuit ground is routed through section A-X of MODE switch S 5 as a pulse input to the camera body.
(2) Circuit ground is routed through section B-X of MODE switch S 5 as a pulse input to the camera body.
(3) Circuit ground is routed through section B-Y of MODE switch S 5 as a night input to the camera body.
(4) A night +28 volts dc input is applied to NIGHT indicator DS4, lighting the lamp.
(5) A night interlock +28 volts dc input is applied to NIGHT INTLK indicator DS3, lighting the lamp.
f. Test Left Assembly. TEST LEFT ASSEMBLY switch S8 is a five-section switch used to test the left assembly module of the camera body. The first three sections are used to check continuity between connector pins on the module and the fourth and fifth sections provide a circuit path to LEFT A and LEFT B indicators DS1 and DS3, respectively. The lamps light when continuity conditions are normal
g. Test Right Assembly. TEST RIGHT ASSEMBLY switch S9 is a four-section switch used to test the right assembly module of the camera body. The first two sections are used to check continuity between connector pins on the module and the third and fourth sections provide a circuit path to RIGHT A and RIGHT B indicators DS2 and DS4, respectively. The lamps light when continuity conditions are normal.

2-14. Internal Test Circuits (fig. FO-8)

The camera analyzer electronic circuit functions when performing internal' tests are described in the follow-
ing paragraphs. Tests which are conducted are: INTERNAL TEST 1 and INTERNAL TEST 2.
a. INTERNAL TEST 1. When MASTER switch Sl is set to INTERNAL TEST 1 , the following circuit functions are completed:
(1) Circuit ground is routed through section A-Y of MASTER switch S1 to INTVL indicator DS4. lighting the lamp.
(2) Circuit ground is routed through section B-X of MASTER switch Sl to VOM DC indicator DS2, lighting the lamp.
(3) Circuit ground is routed through section C-X of MASTER switch Sl to DC VOLTS indicators DS3 and DS4, lighting the lamps.
(4) The output of the -28 volts dc supply is routed through sections $\mathrm{C}-\mathrm{Y}$ and $\mathrm{D}-\mathrm{Y}$ of MASTER switch S1 to VOM + connector J14. Ground is present at VOM - connector J15.
(5) The output of the photocell output simulator is routed through section F-X of MASTER switch Sl and resistor R13 to DC VOLTS INPUT connector J18.
(6) Circuit ground is routed through section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.
(7) Internal +28 volts dc is routed through section G-X of MASTER switch S1 to CYCLE PULSE switch S2. The output of S2 is applied to CYCLE PULSE indicators DS1 and DS2 and through section A-Y of MODE switch S5 (in AUTO, PULSE or PULSE IMC positions), and section H-X of MASTER switch S1 to the recycle initiate simulator circuit and BODY connector J3, pin J. The output of the recycle initiate simulator circuit is routed through section D-X of MASTER switch Sl and resistor R12 to PULSE TIMER PULSE connector J12. Internal equipment ground is present at PULSE TIMER GRD connector J13. Testing is conducted in the following manner. When CYCLE PULSE switch S2 is momentarily set to MANUAL, +28 volts dc is routed to the recycle initiate simulator circuit and BODY connector J3, pin J. This constitutes a start pulse and the recycle initiate circuit recycles. During recycle, the circuit provides an output which is routed through section D-X of MASTER switch Sl and resistor R12 to PULSE TIMER PULSE connector J12. This output constitutes a stop pulse. A pulse timer connected between J3, pin J and J12 measures the time between start and stop pulses.
b. INTERNAL TEST 2. When MASTER switch Sl is set to INTERNAL TEST 2, the following circuit functions are completed:
(1) Circuit ground is routed through section C-X of MASTER switch S1 to DC VOLTS indicators DS3 and DS4, lighting the lamps.
(2) The output of the E V/H simulator circuit is routed through section F-X of MASTER switch Sl
and resistor R13 to DC VOLTS INPUT connector J18.
(3) Circuit ground is routed through section F-Y of MASTER switch Sl to DC VOLTS GRD connector J19.

2-15. Recycle Initiate Simulator Circuit

Operation

$$
\begin{array}{|l|}
\hline \text { (fig. 2-3) } \\
\hline
\end{array}
$$

The recycle initiate simulator circuit provides a ground signal to the camera body which simulates actuation of the recycle initiate switch in the camera shutter assembly. The ground signal, supplied through BODY connector J 3 , pin R when relay K 1 is energized, causes the recycle solenoid and recycle relay in the camera body to energize, thereby initiating recycle operation. The recycle initiate simulator consists of unijunction transistor Q1, relays K1 and K2, and associated circuitry. The circuit is placed into operation by application of +28 volts dc to the junction of resistors R2 and R3 through normally open contacts of the shutter trip relay in the camera body, J3, pin J, and normally closed contacts B2-B3 of relay K2 in the camera analyzer. When this happens, capacitor C2 charges towards +28 volts dc. When the charges on capacitor C 2 reaches the unijunction peak-point voltage, unijunction transistor Q1 is triggered "on." Relay Kl is then energized by current flow through the unijunction transistor. Transferred contacts A1-A2 of relay K1 route ground through J3, pin R, which is a simulated recycle initiate signal to the camera body. Transferred contacts B1-B2 of relay M1 apply +28 volts dc to J3, pin W and J3, pin E through diode CR9 to illuminate RECYCLE INITIATE indicator lamps DS3 and DS4, and also through diode CR12 to relay K2, which energizes the relay. Transferred contacts B1-B2 of relay K2 open the +28 volt dc path to the junction of resistors R2 and R3. As a result, unijunction transistor Ql is placed in cut off, relay Kl deenergizes, and capacitor C 2 discharges through resistor R4 to ground. Contacts B1-B2 also provide relay K2 with holding voltage to keep unijunction transistor Ql in a quiescent state until the shutter trip relay in the camera body deenergizes. The circuit actions described above are accomplished during each operating cycle of the camera body.

2-16. Under and Over Exposure Circuit Operation (fig. 2-4)

a The under and over exposure circuit consists of UNDER and OVER indicator lamps DS1 through DS4, transistors Q6 through Q8, and associated circuitry. The under and over exposure circuit is used with EXPOSURE switch S12 to check operation of the underexposure and overexposure relays, and also the $+5,+10$ and +20 -volt dc outputs, developed in the

Figure 2-3. Camera analyzer, recycle initiate circuit, simplified schematic diagram.
power supply of the lens cone under test. Any one of the dc outputs selected be the position of EXPOSURE switch S12 is supplied directly through LENS CONE connector J6, pin F. The selected dc output is also applied across a voltage divider network consisting of resistor R28 in the camera analyzer and the diaphragm position potentiometer and exposure system trim potentiometer in the lens cone. Resistor R28 is used to substitute for the slit position potentiometer in the shutter assembly to complete the +5 , +10 , or +20 vdc circuit. A portion of the voltage dropped across the diaphragm position potenitometer, summed with the light sensor output, provides the input to the exposure loop in the lens cone. The +10 volt dc output provides a nominal exposure reference voltage. The +5 volts and +10 volts dc outputs are used to cause a change in exposure setting one f/stop below or above the setting determined by the light sensor. The under and over exposure circuit operates as follows:
b. When EXPOSURE switch S12 is set to OVER, a dc ground path is completed through LENS CONE connector J6, pin M to the overexposure relay in the lens cone. The overexposure relay energizes and its transferred contacts apply the +20 volts dc output to the voltage divider network. The +20 volts dc output is also applied through LENS CONE connector J6, pin F to the junction of resistors R27 and R30 in the over
and under exposure circuit. The +20 volts dc exceeds the Zener voltage of diodes CR50 and CR51, so transistors Q6 and Q7 are forward-biased into conduction Transistor Q6 provides a ground to OVER indicators DS1 and DS2, causing the lamps to light. Transistor Q7 provides a ground. for the base of transistor Q8. Transistor Q8 is thereby held in a cut off condition and the ground return path to the UNDER indicators is kept open.
c. When EXPOSURE switch S 12 is returned to the center position, the dc ground path to the overexposure relay through LENS CONE connector J6, pin M is opened causing the relay to deenergize. The +10 volts dc output is now applied through normally closed contacts of underexposure and overexposure relays to the voltage divider. The +10 volts dc output is also applied through LENS CONE connector J6, pin F to the junction of resistors R27 and R30 in the camera analyzer. The +10 volts dc exceeds the Zener voltage of diode CR51 so transistor Q7 remains forward-biased to keep the base of transistor Q8 grounded. Transistor Q8 is held in cutoff and the UNDER indicator lamps remain extinguished However, the +10 volts dc is below the Zener voltage of diode CR50, so transistor Q6 is cut off and the OVER lamps are extinguished.
d. When EXPOSURE switch S 12 is set to UNDER, a dc ground path is completed to the underexposure re-
lay in the lens cone through LENS CONE connector J6, pin L. The underexposure relay energizes and its transferred contacts apply the +5 volt dc output to the voltage divider network, and to the junction of resistors R27 and R30 in the over and under exposure circuit of the camera analyzer. Since this voltage is below the Zener voltage of diode CR51, transistor Q7 is cut off to remove ground from the base of transistor Q8 allowing it to be forward-biased by +28 volts dc through resistor R32. Now, transistor Q8 conducts and grounds UNDER lamps DS3 and DS4 causing the lamps to light

2-17. Increase and Decrease Exposure Circuit Operation

(fing. 2-5)
a. The increase and decrease exposure circuit consists of the INCR LIM DS1, DECR LIM DS2, INCR DS3, and DECR DS4 indicator lamps; transistors Q9 through Q12; and associated circuitry. The increase and decrease exposure circuit is used with DC EXPOSURE switch S13 to check the operation of the servo drive module and relays K3 and K4 in the lens cones under test The servo drive module and the relays are tested when the lens cone is connected to the camera analyzer with test cable W3 at LENS CONE

Figure 2-4. Camera analyzer, under and over exposure circuit, simplified schematic diagram.
connector J6, and the servo drive module is tested when the module is connected to the camera analyzer with test cable W8 at MODULE connector J8. The indicator lamps on the camera analyzer indicate the direction of servo drive, and correspond to the position of the DC EXPOSURE switch. When the increase or decrease drive limit is reached, the corresponding INCR LIM or DECR LIM lamp lights. Increase and de crease exposure circuit operation is given in b through g below.
b. When DC EXPOSURE switch S13 is set to INCREASE with a 3 -inch, 6 -inch, or 12 -inch lens cone connected to the camera analyzer, a ground connection is completed through diode CR5 and LENS CONE connector J6, pin H to relay K4 in the lens cone, causing the relay to energize. The transferred contacts of the relay apply +28 volts dc across the servo drive motor as to cause the motor to drive in a direction which increases the width of the shutter slit The relay also applies +28 volts dc through LENS CONE connector J6, pin T to the junction of resistor R40 and diode CR60 The +28 volts dc is applied through diodes CR58 through CR60 to INCR indicator DS3, causing the lamp to light.
c. When the slit width reaches its maximum increase limit, a limit switch in the servo drive module is mechanically actuated to disconnect the +28 volts dc to the drive motor and also from LENS CONE connector J6, pin T. This causes the motor to stop and INCR lamp DS3 in the camera analyzer to extinguish The limit switch applies the +28 volts de to LENS CONE connector J6, pin S and INCR LIM indicator DS1, and the lamp lights.
d. The 44 mm lens cone does not contain a slit width drive motor. Therefore, when DC EXPOSURE switch S13 is set to INCREASE with a 44 mm lens cone under test, the ground connection is completed from LENS CONE connector J 6 , pin H to relay K 4 in the lens cone, causing the relay to energize. The transferred contacts of the relay apply +28 volts dc to LENS CONE connector J6, pin S and to INCR LIM indicator DS1 lighting the lamp. Ground interlock applied through LENS CONK connector J6, pin b forward-biases transistor Q3 into conduction, which places its collector at +28 volts dc. As result, transistor Q11 is also forward-biased into conduction to hold transistor Q10 in cut-off and keep DECR LIM lamp DS2 extinguished.
e. When DC EXPOSURE switch S 13 is set to DE

CREASE with a 3 -inch, 6 -inch, or 12 -inch lens cone connected to the camera analyzer, a ground connection is completed through diode CR6 and LENS CONE connector J6, pin X to relay K3 in lens cone under test, causing the relay to energize. The transferred contarts of the relay apply +28 volts dc across the servo drive motor, and through LENS CONE connector J6, pin T to the junction of resistor R40 and diode CR62. A +28 volt de return (ground) path is also completed from LENS CONE connector J6, pin A to the normally closed contacts of relay K4 in the lens cone to LENS CONE connector J6, pin U to the junction of diode CR63 and the emitter of transistor Q9. This completes the power circuit to the drive, motor as as to cause the motor to drive in a direction which decreases the width of the shutter slit The voltage drop across diodes CR62 and CR63 forward-biases transistor Q9 into conduction which grounds DECR indicator DS4, causing the lamp to light
f. When the slit width reaches its maximum de crease limit, a limit switch in the servo drive module is mechanically actuated. The switch disconnects the +28 volts dc return from LENS CONE connector J6, pin T, which causes the drive motor in the lens cone to stop and transistor Q9 in the camera analyzer to cut off and extinguish the DECR lamp. At the same time, transistor Q11 is cut off, allowing Q10 to be forwardbiased by the -28 volts dc potential on its emitter and power ground applied through diode CR64 to its base. As a result, transistor Q10 conducts to provide -28 volts dc to the DECR LIM indicator through contacts of LAMP TEST switch S6, lighting the lamp.
g. When DC EXPOSURE switch S 13 is set to DE CREASE with a 44 mm lens cone under test, a ground connection is completed through CR6 and LENS CONE connector J6, pin X to relay K3 in the lens cone, causing the relay to energize. The transferred contacts of the relay apply +28 volts dc to LENS CONE connector J6, pin R and to the cathode of Zener diode CR66. The +28 volts dc at the cathode of Zener diode CR66 and the -28 volts dc at the emitter of transistor Q12 exceeds the Zener voltage of diode CR66 and transister Q12 is forward-biased into conduction The conduction of transistor Q12 overrides the effect of transistor Q3 conducting and forces transistor Q11 to cutoff. This action permits transistors Q10 to be for-ward-biased and apply -28 volts dc to DECR LIM indicator DS2 through normally closed contacts of LAMP TEST switch S6, lighting the lamp.

Section III. CAMERA TEST ADAPTER STAGE ANALYSIS

2-18. Camera Test Adapter Power Distribution (fig. 2-6)
a. $115-\mathrm{Vac}, 400-\mathrm{Hz}$ Power. With POWER switch S6
on the camera test adapter and the PANEL POWER and CAMERAS POWER switches on the LS-30A set at their ON positions, $115-$ volt ac, $400-\mathrm{Hz}$ power is applied as follows:

Figure 2-5. Camera analyzer, increase and decrease exposure circuit, simplified schematic diagram
(1) Through pin B of connector J705 on the LS-36A, filter FL703, 3-amp fuse F702, PANEL POWER switch S711 contacts 4 and 2, and resistor R734 to AC lamp DS709, causing it to illuminate.
(2) Simultaneously, the ac output from S711 is applied through CAMERAS POWER switch S710 contacts 1 and 2, and pin K of connector J706 to pin K of connector P3 on the camera test adapter.
(3) The ac input at pin K of connector P3 on the camera test adapter is applied through POWER switch S6 contacts to transformer A3T1 and to pin S of connector P 2 for application to the camera under test
b. 28-Vdc Power. When the POWER switch on the camera test adapter is set to ON, 28 -volts dc power is applied through pin J of connector J1, 15 ampere fuse F2 and POWER switch S6 contacts to power indicator lamp DS1, LAMP TEST switch S5, and to pins K and L of connector P2 for application to the camera under test.

2-19. Camera Test Adapter Power Supply Circuit (fig. 2-7)

This circuit develops a constant 5.1-volts dc operating voltage for the exposure control circuit on the camera test adapter. The power supply circuit consists of: an ac input coupling transformer, T 1 ; a full-wave bridge rectifier circuit, CR10 through CR13; current limiting resistor R15; an output voltage filtering circuit, capacitors Cl and C 2 , Zener diodes CR8 and CR9; and output divider network resistors R11 through R14.
a. Output Circuit. The dc output voltage of the power supply is developed across variable resistors R11 and R12, and resistors R13 and R14. When EXPOSURE switch S2 is set at the 44MM (1-3/4 inch) CAL and 3,6 , and 12 IN. CAL positions, a portion of the power supply output is taken from variable resistor R11 for use as an exposure test signal (The actual voltage level is determined by the setting of R11.) This

signal then is coupled to the exposure circuit of the camera under test for setting its shutter speed and lens aperture as indicated in the following chart. When EXPOSURE switch S2 is set at the OPR ALL position, operation is the same as described for the CAL positions except that a lower level exposure test voltage is coupled to the camera from variable resistor R12.

	Camern under test	Shutter speed	APERTUKL indication
$44 \mathrm{~mm}\left(1^{3} \cdot \mathrm{in}\right)$	KA-76A	$\frac{1}{100}$	Fixed (f/5.6)
3 in.	KA-76A	1	¢2.8
		100	
6 in	KA-76A	1	¢/3.5
		100	
12 in .	KA-76A	1	f/4.5
		100	

Resistors R6 through R9 are provided to compensate for differences in the camera exposure circuits necessitated by the different maximum effective apertures of the camera lenses.
b. Input Circuit.
(1) The input circuit for the power supply consists of 1.5 ampere fuse F1, relays K1 and K2, dc blocking diodes CR4 through CR7, and EXPOSURE switch S2. When POWER switch S6 is set to ON, 115-volt ac operating voltage is applied to the primary windings of power transformer T1 through contacts Al and A2 of relay K2, provided K2 is energized Simultaneously, the primary windings of power transformer T 1 is grounded through contacts B1 and B2 of relay K2.
(2) Relay K2 normally has positive 28 -volts dc applied to contact Xl on its solenoid from the camera's
positive 28 -volt dc interlock line through pin J of connector P2. Thus, it can he seen that whether relay K2 is energized to activate the power supply or not is de pendent upon the position of EXPOSURE switch S2A, which provides a ground return for relay K2. EXPOSURE switch S2A is grounded for all positions except the SEN (last) position, provided the camera is equipped with the appropriate lens cone that corresponds to the switch position The SEN position of switch S2A does not energize K2 because d photocell input is used at this time in place of an exposure signal, therefore power supply operation is not required.

NOTE

In the paragraphs that follow, discussion of camera test adapter circuit operation is related to operation of a KA-76A connected into the test system as shown in referenced drawings. Control and oneration of KA-76A with the $13 / 4,3,6$, or 12 -inch lens cone is similar except where noted otherwise.

2-20. Camera Test Adapter System
 Power Turn-On Conditions (fig. FO-1 and FO-15)

When POWER switch S6 is set to ON, the camera test adapter and camera circuits are activated for operation in the selected mode. The camera then remains in a static (ready) condition until cycle operation is initiated by application of an operate ground signal or an operate ground signal followed by a cycle pulse. At this time, the application of 28 -volt dc and 115 -volt ac, $400-\mathrm{Hz}$ power establishes the following conditions:
a Positive 28 volts dc is applied to power indicator lamp DS1 in the camera test adapter, illuminating lamp DS1 to signify the presence of dc power.
b. A dc ground path is completed to relay K1 in the camera test adapter through the 44 mm (13/4), 3, or 12-

Figure 2-7. Camera test adapter, powersupply, block diagram.
inch interlock lines, energizing relay K1. (Positive 28 volts dc is applied to relay K1 from the +28 -volt dc camera interlock line.) When relay K1 is energized, its contacts A2 and A3 are interrupted to remove ground from contact 3 of EXPOSURE switch S2A. This disables the exposure test circuit and power supply circuit to prevent invalid indications that would be obtained if other than a KA-76A camera with a 6 -inch lens cone were connected into the test system and testing were attempted with EXPOSURE switch S2A set to the 6 IN . CAL position.

NOTE

When KA-76A is operated with a 6 -inch lens cone, relay K1 remains de-energized after primary ac and dc power is applied. Contacts A2 and A3 of relay K1 remain closed to apply ground to contact 3 of EXPOSURE switch S2A so the power supply can be activated to produce exposure test signals when switch S2 is set at the 6 IN . CAL position.
c. Positive 28 volts dc is applied to INTLK indicator DS3 in the camera test adapter through camera film failure switch 1A1A5S2 and camera cassette interlock switch 1A1A5S1, illuminating lamp DS3. This signifies that film is properly installed in the cassettes and that the cassettes are properly installed on the camera.
d. A dc ground path is completed to relay K2 through EXPOSURE switch S2A in the camera test adapter, energizing the relay. As a result, transferred contacts of relay K2 apply $115-$ volt ac, $400-\mathrm{Hz}$ power to the primary winding of power transformer T 1 to develop exposure test signals.
e. Positive 28 volts dc is applied from POWER switch S 6 of the camera test adapter to the camera shutter drive motors (fig. FO-9) through camera fuse 1A1F1. The shutter drive motors operate to cock the shutter and place the camera in a ready condition.
f. The $115-$ volt, $400-\mathrm{Hz}$ power is applied from POWER switch S6 of the camera test adapter to the camera lens cone power supply to develop voltages for the exposure control circuits (fig. FO-9).
2-21. AUTO Mode
(fig. FO-1 and FO-9
NOTE
When the camera and camera test adapter are interconnected, MODE switch A3Sl in the camera test adapter is connected in parallel with the camera mode switch 1A1A3S1. Therefore, setting the camera mode switch to AUTO permits the camera test adapter MODE switch to select any mode of camera operation.
Camera operation in the auto mode is initiated when OPERATE switch S705 on the LS-36A is set to ON.

At this time, an operate ground signal is applied from the OPERATE switch through the camera test adapter to camera operate relay 1 AlA 3 K 3 which energizes causing the camera to operate in the autucycle mode. Circuit operations and indications are as follows:
a. Transferred contacts of the operate relay apply +28 volts dc to OPR ON lamp DS1 lighting the lamp.
b. Positive and negative drive voltages developed in the system simulator servo power unit are applied to the motor section of camera motor-generator 1A1A2MG1. This starts the motor, forcing it to drive its generator section. The generator output (tach voltage) is applied through the camera test adapter to the LS-36A servo power unit. Here, it is applied through the focal length resistors and summed with the modified E V/H signal applied through the depression angle resistors. The resultant voltage then is applied as an error signal to the film drive amplifier in the LS-36A servo power unit, completing a servo loop which causes the motor to operate at IMC speed.
c Autocycle vacuum switch 1A1S2 and autocycle trip switch 1A1S3 are actuated by the shuttle cam in the camera When this occurs, SYNC lamp DS1 in the camera test adapter flashes momentarily as a result of a +28 -volt dc pulse (SYNC) applied through the autocycle vacuum and autocycle trip switches.
d. The positive 28 -volt dc pulse which illuminates the SYNC lamp also is coupled to shutter trip relay 1A1A3K2, causing it to energize and initiate a shutter exposure cycle. This is accomplished through the autocycle vacuum switch 1A1S2, autocycle trip switch 1A1S3, normally closed contacts of auto-pulse transfer relay 1A1A1K5, normally closed contacts of pulse relay 1 AlAK4, normally closed contacts of night relay 1AIA3K1, the normally open contacts of operate relay 1A1A3K3, and normally closed contacts of recycle lockout relay 1AlAK1.
e. Electronic flash switch 1 A 2 A 2 S 2 in the camera is mechanically actuated during the shutter exposure cycle. When this occurs, a 28 -volt. dc pulse is produced by switch 1A2A2S2 which forward-biases inverterstretcher stage Q1 in the camera test adapter which functions as a pulse stretcher. When Q1 first turns on FLASH indicator lamp DS2 illuminates momentarily.
f. Data trip switch 1A2A2S9 in the camera is me chanically actuated during the shutter exposure cycle. When this occurs, a +28 vdc data pulse is transferred from the normally closed (NC) contacts of the data trip switch to its normally closed (NO) contacts and inverter-stretcher Q2 in the camera test adapter. This forward-biases Q2 which conducts to illuminate DATA lamp DS3.
g. Operate indicate switch 1A2A2S4 in the camera is mechanically actuated during the shutter exposure cycle. When this occurs, a +28 -volt dc pulse is coupled from switch 1A2A2S4 to CYCLE indicator lamp DS4
in the camera test adapter, illuminating it momentarily.
h. Operation in autocycle mode is repeated as described above until the operate ground is removed by setting the OPERATE switch on the system simulator to OFF.
i. If film runs out or breaks during camera operation, $a+28$-volt dc path is completed through film failure switch 1A1A5S2 in the camera which illuminates FILM FAIL indicator DS2 in the camera test adapter.

2-22. PULSE Mode

$$
\begin{array}{|l|}
\hline \text { figs. FO-1 and FO-10) } \\
\hline
\end{array}
$$

Pulse mode operation of the camera is selected by Setting MODE switch S1 on the camera test adapter PULSE. When POWER switch S6 is set to ON, operation occurs as described in paragraph 2-20. However, before the camera can be cycled, the OPERATE switch on the system simulator must be set at ON to produce an operate ground signal which energizes camera operate relay 1A1A3K3. When this happens, the camera circuits operate as described in the following
a. When CYCLE pushbutton switch S 7 on the camera test adapter is momentarily depressed, a +28 -volt dc pulse is produced which energizes shutter trip relay 1A1A3K2. This is accomplished through connector pin P2-N of the camera test adapter, connector-pin $\boldsymbol{J} \mathbf{2}-\boldsymbol{N}$ of the camera, NO contacts of pulse relay 1A1AlK4, NC contacts of night relay 1A1A3K1, NO contacts of operate relay 1AlA3K4, and NC contacts of recycle lockout relay 1 AlAlKl . The +28 -volt dc cycle pulse also is applied through normally open contacts of the pulse relay to SYNC indicator lamp DSl , on the camera test adapter causing the lamp to illuminate momentarily.
b. When camera shutter trip relay 1A1A3K2 energizes, shutter (exposure) operation occurs,
c. Electronic flash switch 1A2A2S2 in the camera is mechanically actuated during the shutter exposure cycle. This is signified by the momentary illumination of FLASH indicator lamp DS2 on the camera test adapter.
d. Data trip switch 1A2A2S9 in the camera is mechanically actuated during the shutter exposure cycle. This is signified by the momentary illumination of DATA indicator lamp DS3 on the camera test adapter (para 2-21f).
e. Operate indicate switch 1A2A2S4 in the camera is mechanically actuated during the shutter exposure cycle. 'This is signified by the momentary illumination of CYCLE indicator lamp DS4 on the camera test adapter.
f Film is automatically recycled and the camera shutter is cocked in readiness for the next cycle pulse. NOTE
If film breaks or runs out during this mode of
operation, FILM FAIL indicator lamp DS2 on the camera test adapter illuminates (para 2-21i).

2-23. IMC PULSE Mode
figs. FO-1 and FO-10)

IMC PULSE mode operation of the camera is selected by setting MODE switch A 3 Sl on the camera test adapter to IMC PULSE. Application of power and operate ground places the camera in a ready condition as described in paragraph and cycle operation is initiated by momentarily depressing CYCLE pushbutton switch S 7 on the camera test adapter. IMC pulse mode operation is similar to pulse mode operation (para 2-22) except that during the shutter exposure cycle, film is transported at the IMC film speed rate. This is achieved by application of plus and minus film drive from the system simulator to the camera through the camera test adapter. The rate of IMC film speed is controlled by adjustment of the CAMERA COMMAND switch on the system simulator. The camera undergoes one exposure cycle each time CYCLE pushbutton switch S7 on the camera test adapter is momentarily depressed.

2-24. Night Mode
 (figs. FO-1 and FO-11)

Night mode (night open shutter) operation of the camera is selected by setting MODE switch Sl on the camera test adapter to NIGHT. Operation and control of the camera in night mode is the same as IMC PULSE mode (para 2-23) except as follows:
a. When camera test adapter MODE switch Sl is set to NIGHT, a dc ground path is completed to night relay 1 AlA 3 Kl in the camera through connector-pin $\mathrm{Pl}-\mathrm{K}$ of the camera test adapter and connector-pin Jl-K of the camera. The relay energizes and its transferred contacts complete a +28 -volt dc path to NIGHT indicator lamp DS4 of the camera test adapter, illuminating lamp DS4.
b. After power is applied and the camera shutter cocks, the operator must set the CURTAIN LATCH control on the camera shutterThis action mechanically actuates day-open switch 1A2A2S5 in the camera and latches the trailing curtain in the open position. This switch completes the ground path to night transfer relay 1A2A2Kl which energizes to complete the night mode circuits.
c. When the OPERATE switch on the system simulator is set to ON, operate ground is applied as previously described through the camera test adapter to operate relay 1 AlA 3 K 3 which energizes. The camera unwinds the leading curtain, thereby opening the shutter and placing the camera in a ready condition for cycle operation in the night mode.
d. Cycle operation is initiated by momentarily
depressing CYCLE pushbutton switch S7 on the camera test adapter. This couples a +28 -volt dc shutter close pulse to the camera causing the leading
curtain to close. The camera then automatically recycles film and opens the leading curtain to prepare the camera for the next shutter close pulse.

CHAPTER 3

DIRECT SUPPORT MAINTENANCE INSTRUCTIONS

Section I. GENERAL

```
3-1. Scope of Direct Support Mainte-
    nance
```

This chapter contains the following direct support maintenance functions for the camera analyzer and camera test adapter: bench testing, troubleshooting, voltage and resistance measurements, disassembly, reassembily, and direct support testing procedures. The direct support maintenance procedures supplement the maintenance procedures contains in TM 11-6760-239-12.

3-2. Organization of Direct Support (DS) Maintenance

The maintenance duties of the direct support repairmen for the camera analyzer and camera test adspter are contained in a and b below together with referencea to the paragraphs covering the specific maintenance function.
a. Camera Analyzer.
(1) Bench test (para 3-7b).
(2) Troubleshooting procedures (para 3-7c).
(3) Voltage and resistance measurements (para 3-8).
(4) Replacement procedures (para 3-13).
(5) Adjustments (para 3-15).
(6) Cleaning (para 3-16).
(7) Physical tests and inspection (para 3-24).
(8) Electrical test (para 3-25).
b. Camera Test Adapter.
(1) Bench test (para 3-9a).
(2) Troubleshooting procedures (para 3-9 b).
(3) Voltage and resistance measurements (para 3-10).
(4) Replacement procedures (para 3-19).
(5) Cleaning (para 3-20).
(6) Physical tests and inspection (para 3-26).
(7) Electrical test (para 3-27).

Section II. TOOLS AND EQUIPMENT (DS)

3-3. Tools and Test Equipment Required for Direct Support Maintenance

Refer to the maintenance allocation chart (app B, TM 11-6760-239-12) for a listing of tools and test equip ment required to perform the maintenance functions outlined in paragraph 3-2.
3-4. Materials Required for Direct Support Maintenance
The materials required for direct support maintenance are listed in table 3-1.
Table 3-1. Materials Required For Direct Support Maintenance $\begin{array}{lll}\text { Item } & \text { Quantity } & \text { National stock number } \\ \text { Trichloroethane } & \text { As required } & 6810-00-664-0273\end{array}$ Solder
$\begin{array}{ll}\text { As required } & 6810-00-664-0273 \\ \text { As required } & 3439-00-194-9727\end{array}$

Table 3-1. Materials Required For Direct Support Maintenance-

Item Continued		National stock number
Lint-free cloth A	As required	8305-00-170-5062
(Mixture of Isopropyl alcohol 65% and Freon 35%)	propyl al- Freon 35\%) As required	6850-00-133-0695
Sandpaper, fine A	As required	5350-00-235-0124
Test drive generator fabrication (used for bench test (para 3-7b)):		
Diode JAN 1 N654	54	5961-00-577-6084
Fuse FHN 26W	1	5920-00-952-9029
Connector 22-55PX \quad MS3126F	MS3126F- 1	5935-00-902-1818
Resistor RW33V150	150	5905-00-843-2809
Switch MS24655-221	5-221	5930-00-892-9550
Wiring No. 18 AWC A	AWC Asrequired	6145-00-805-1720

Section III. DS TROUBLESHOOTING

Be extremely careful when troubleshooting or making repairs on the camera analyzer or camera test adapter. Use insulated test probes when making voltage measurements. Disconnect the power cable from the equip ment before touching internal parts.
a. Troubleshooting at the dirrect support maintenance includes all the techniques outlined for organizational maintenance and any special or additional techniques required to isolate a defective part. The direct support maintenance procedures are not complete in themselves but supplement the procedures
outlined in TM 11-6760-239-12.
b. Troubleshooting may be performed while the equipment is operating or if necessary, after the equipment (or parts of it) has been removed from service. When trouble occurs, certain observations and measurements can be made that will help to determine the source of trouble. Paragraph 3-6 describes the systematic procedure to be followed which will enable the maintenance personnel to isolate the cause of the trouble and correct the fault.

3-6. Organization of DS Troubleshooting

 Proceduresa. General. Three steps are used in troubleshooting equipment. They are: sectionalization, localization, and isolation. Sectionalization means tracing the fault to the major unit Refer to TM 11-6760-239-12 for sectionalization procedures. Localization means tracing the fault to the defective section or stage within an assembly or subassembly. Isolation means tracing the fault to the defective part. Some faults can often be located by sight, touch, or hearing. The majority of faults, however, must be isolated by detailed electrical, mechanical, and electronic checks.
b. Sectionalization Checks. Sectionalization of troubles is started with a troubleshooting chart in TM 11-6760-239-12.
c. Localization Checks. After the trouble has been sectionalized, perform the bench tests (para 3-76 and $3-9 \mathrm{a}$) on the equipment. The bench tests serve as a check of the localization technique. In addition, assemblies or subassemblies, in some cases parts, can be localized within the equipment by the methods listed (1) through (4) below.
(1) Visual inspection. The purpose of visual inspection is to locate faults without testing or measuring circuits or components. All visual signs should be analyzed to help locate the fault to a particular sub chassis, stage, or part. Mechanical faults are most often localized through visual inspection.
(2) Pluck-out parts. Defective pluck-out parts will be the cause of many troubles. Remove and test all pluck-out parts suspected of being faulty. Replace each defective part with an identical part known to be good.
(3) Troubleshooting tables. The trouble symptoms listed in troubleshooting tables will aid in localizing trouble to a component part, subassembly, or assembly.
(4) Signal substitution. Signal substitution procedures quickly enable localization of a trouble. An oscilloscope, rc bridge, or differential voltmeter may be used in signal substitution procedures.
d. Isolation Checks. Isolation checks for individual assemblies and subassemblies will not be performed at the direct support maintenance level. Defective parts can be isolated by the methods in (1) and (2) below.
(1) Voltage and resistance measurements. This equipment is transistorized. Observe all cautions given to prevent transistor damage. Make voltage and resistance measurements in this equipment only as speci fied. When measuring voltages, use tape or sleeving to insulate the entire test prod except for the extreme tip. A momentary short circuit can ruin the transistor. (For example, if the bias is shorted out, excessive current between the emitter and the base would ruin the transistor.) Use resistor, inductor, and capacitor color codes (fig. FO-20) to determine values of components, Use voltage and resistance tables to find normal readings, and compare them with readings taken
(2) Intermittent troubles. In all tests, the possibility of intermittent troubles should not be overlooked. If present, this trouble often is made evident by tap ping the front panel. Check wiring and connections to assemblies and subassemblies within the equipment

CAUTION

The equipment is transistorized. To prevent possible damage or destruction of transistors by excessive current, use only the $\mathrm{R} \times 100$ range on the multimeter to make circuit resistance measurements.
3-7. Camera Analyzer DS Troubleshooting
a Preliminary Procedures (fig. 3-2).
(1) Fabricate the test drive generator in accordance with figure 3-1.
(2) Set all controls and switches to their off, neutral, or counterclockwise positions.
(3) Connect Multimeter TS-352B/U (multimeter) to the VOM+ and -terminals. Observe polarity as marked. Adjust the multimeter to indicate a negative voltage.
(4) Connect Voltmeter, Electronic ME-202A/U (vtvm) to the DC VOLTS INPUT and GRD, terminals.
(5) Connect BNC adapter 1269 (part of the camera analyzer) to the PULSE TIMER PULSE and GRD terminals.
(6) Connect the B input of Timer, Digital, Electronic LA-387A (digital timer) to BNC adapter 1269.
(7) Connect the A input of the digital timer to the SCOPE VERT terminal.
(8) Connect Oscilloscope AN/USM 281A (oscilloscope) to the SCOPE VERT and GRD terminals.
(9) Connect the test drive generator (fig. 3-1) to MODULES connector J11. Do not connect the test drive generator to power source until directed in, the bench test
(10) Connect power cable W9 to primary power source and to POWER connector J1.
b. Camera Analyzer Bench Test. Perform the camera analyzer bench test in the sequence given in table 3-2.

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	MIL PN	NSN
CAI	JAN IN645	5961－00－577－6084
FI	FHN 26w	5920－00－952－9029
3	MS 3126F－22－55PX	5935－00．902－1818
R1	Rw33viso	5915－00－843－2809
． 2	Rw33v300	590：－00－642－2026
51	ME－＿4EE5－くこ1	3930－00－892－9550
－1日 awg		6145－00－805－1720

EL6760－239－34－TM－6

Figure 3－1．Test drive generator fabrication．

Figure 3－2．Camera analyzer，bench test setup．

Table 3-2. Camera Analyzer Bench Test
p

Procedure
Position or cainers analyzer
switches
POWER switch (PANEL
POWER section): ON
(AMP TEST switch (MASTER
section): ON
LAMP TEST switch: OFF
MASTER switch: INTERNAL
TEST1

CYCLE PULSE switch (CAMERA BODY section): Depress momentarily to MAN. UAL.

MASTER switch (MASTER sect:on): INTERNAL TEST 2
E V/H control (CONTROL. POWER SUPPLY section): 50
E V/H control: 10
MASTER switch (MASTER section): CONTROL PWR SUPPLY MODULE TEST switch (CON. TROL POWER SUPPLY section): FDA OPR

PLUS OUTPUT switsh (CONTROLPOOWER SUPPLY section): Depress momentarily
OPERATE OFF switch: Depress momentarily.
MASTER switch (MASTER section): LENS CONES
DC EXPOSURE switch (LENS CONE section): INCREASE

DC EXPOSURE switch: DECREASE
TEST switch (LENS CONE section): PHOTO SENSOR; RANGE switch: 0-10,000 FOOTLAMBERTS control Rotate from minimum (ccw) to maximum (cw).
RANGE switch: 0-100 FOOT- LAMBERTS control: Rotate from minimum (ccw) to maximum (CW).
MASTER switch (MASTER section):
INTERNAL TEST 1;
MODE switch (CAMERA BODY section): AUTO CYCLE PULSE switch: Depress momentarily to MANUAL.
BODY OPR switch: ON

Reauldindication

AC PWR and DC PWR lamps (PANEL POWER section) light.
All remaining front panel indicators light.
a. INTVL, VOM DC, and DC VOLTS indicators (MASTER section) light.
b. Multimeter should indicate -25 ± 5 volts dc.
c. Vtvm should indicate -3.34 vdc ± 50 millivolts.
a. CYCLE PULSE indicator (CAMERA BODY section lights while switch is in MANUAL.
b. RECYCLE INITIATE indicator flashes.
c. Digital timer should indicate betweer 10 and 15 milliseconds.
DC VOLTS indicator (MASTER section) lights.
Vtvm should indicate 50 ± 0.05 volts dc.
a. Oscilloscope should present sawtooth waveform; 800 Hz per second rate, 2.5 centimeters wavelength.
b. Motor-tachometer simulator circuit load lamps DS1 through DS4 light.
Vtvm should indicate greater than 3.0 volts.

Vtvm should andicate 0 volts.

Multimeter should indicate $\boldsymbol{+ 2 8}$ vdc.

Multimeter should indicate +28 vdc.
Vtvm should indicate from 0 to -3.34 vdc as control is rotated cw.

Vtum should indicate from 0 to -3.34 vdc as control is rotated cw.

Digital timer should indicate from 10 to 15 milliseconds.

Multimeter should indicate zero resistance.

Connect multimeter between J3, pin L and
ground; set for RX1 range.
a. Set switch on test drive generator to off position.
b. Disconnect multimeter from VOM terminals and connect between J 8 , pin J and ground.
Connect multimeter between J8, pin N and ground.

Table 3-2. Analyzer Bench Test - Continued

Step	Procedure	Poaition of camere analyzer awitches	Reauldindication
17	Connest multimeter between J̇, pin K and ground.	SIM OPR switch: ON	Multimeter should indicate zero resistance.
18	Connect multimeter between if6, pin $\mathbf{H}(+)$ and ground (-) set for RX1 ringe.	DC EXPOSURE switch (LENS CONE section): INCREASE	Multimeter should indicete approximately 16 ohms resist. ance.
19	Connect multimeter between Jf , pin $\mathbf{X}(+)$ and ground (-), set for RX1 range.	DC EXPOSURE switch: DECREASE	Multimeter should indicate approximately 16 ohms resistance.
20	Connect multimeter between J6, pin M and ground; set for RX1 range.	EXPOSURE switch: OVER	Multimeter should indicate zero resistance.
21	Connect multimeter between J6, pin L and ground.	EXPOSURE switch: UNDER	Multimeter should indicate zero resistance.
22	Connect nultimeter between J8, pin C and RK BRDG-terminal.	TEST switch S/CA	Multimeter should indicate zero resistance.
23	Connect multimeter between R/C BRDG + terminal and ground.	TEST switch: S/CA	Multimeter should indicate zero resistance.
24		POWER switch (PANEL POWER section): OFF	All indicators extinguish.

c. Camera Analyzer Troubleshooting Procedures. Steps referenced in the Trouble symptom column table $3-3$, refer to numbered steps in the bench test (b above). Electronics parts and asersiated circuits re-

Table 3-3. Camera A nalyzer DS Troubleshooting

Item	Troubie symptom	Probable trouble	Correction
1	AC PWR indicator does not light(step 1).	a. Defective lamps DS1 and/or DS2.	a. Replace defective lamp.
		b. Dirty lamp terminals.	b. Clean terminals with fine abrasive.
		c. Defective indicator lamp assembly A6.	c. Replace(para 3-13a).
		d. Defective resistor R1.	d. Refer to a higher category of maintenance.
		e. Defective POWER switch S7.	e. Replace (para 3-13b).
		f. Defective fuse F1 or fuseiolder XF1.	f. Replace(para 3-13h).
		g. Defective POWER connector J1.	g. Refer to a higher category of maintenance.
2	AC PWR indicator lights with one lamp out (step 1).	a. Defective lamps DS1 and/or DS2.	a. Replace defective lamp.
		b. Dirty lamp terminals.	b. Clean terminals with firie abrasive.
		c. Defective indicator lamp assembly A6.	c. Replace(para 3-13a).
3	DC PRW indicator does not light (step 1).	a. Defective lamps DS3 and/or DS4.	a. Replace defective lamp.
		b. Dirty lamp terminals.	b. Clean terminals with fire abrasive.
		c. Defective indicator lamp assembly A6.	c. Replace (para 3-13a).
		d Defective POWER switch S7.	d. Replace(para 3-13b).
		e. Defective fuse F2 or fuseholder XF2.	e. Replace(para 3-13h).
		f. Defective POWER connector J 1 .	f. Refer to a higher category of maintenance.
4	One or more indicators on front panel do not light(step2).	n. Defective lamp(s).	a. Replace lamp(s).
		b. Dirty lamp terminals.	b. Clean terminals with fine abrasive.
		c. Defective indicator lamp assembly.	c. Replace (para 3-13a).
		d. Defective LAMP TEST switch S6.	d. Replace (para 3-13b).

DC VOLTS inaicator does not light(step5).
Vtvm does not indicate $50 \pm .05 \mathrm{vdc}($ gtep 6$)$.

Vtvm does not track E V/H control (step 7).

Oscilloscope does not indicate proper wave form (step8).

Probable trouble
e. Defective lamp circuit diodes on assembly A16.
a. Defective MASTER switchS1.
b. Defective MASTER switchS1.
c. Defective MASTER switchS1.
a. Defective transformer T1.
b. Defective capacitor on assembly A16.
c. Defective resistor R2.
d. Defective MASTER switchS1.
e. Defective VOM binding posts J14 and J15.
a. Defective photocell simulator circuit.
b. Defective transistor Q2.
c. Defective FOOT-LAMBERTS control R4.
d. Photocell simulator circuit misadjusted
e. Defective MASTER switchS1.
f. Defective DC VOLTS binding posts J18 and J19.
a Defective MASTER switchS1
b. DefectiveCYCLE PULSE switch S2.
c. Defective diode CR7.
a. Defective MODE switch S5.
b. Defective resistor R1 and/or capacitor Cl.
a. Recycle initiate circuit out of adjustment.
b. Defective PULSE TIMER binding posts J 12 and J 13 .
c. Defective BODY connector J3.

Defective MASTER switchS1
a. Defective operationa: amplifier power supply.
b. Defective operational amplifier.
c. Defective transformer T1.
d. Defective +50 -volt power supply and/or regulator circuit.
e. Defective E V/H control
f. Incorrect adjustment of +50 volt power supply.
a. Defective E V/H control
b. Loose knob on shaft of E V/H control
a. Defective MASTER switch S1.
e. Replace assembly A16 (para 3-13i).
a. Refer to a higher category of maintenance.
b. Refer to a higher category of maintenance.
c. Refer to a higher category of maintenance.
a. Refer to a higher calcgory of maintenance.
b. Replace assembly A16 (para 3-13i).
c. Refer to a higher category of maintenance.
d. Refer to a higher category of maintenance.
e. Replace(para 3-13g).
a. Replace assembly A16 (para 3-13i).
b. Refer to higher category of maintenance.
c. Replace (para 3-13f).

1. Perform adjustment procedure (para 3-15b).
e. Refer to a higher category of maintenance.
f. Replace(para 3-13g).
a Refer to a higher category of maintenance.
b. Replace (para 3-13b).
c. Refer to higher category of maintenance.
a. Refer to a higher category of maintenance.
b. Refer to higher category of mintenance.
a. Periorm adjustment procedure (para 3-15d).
b. Replace (para 3-13g)
c. Refer to a higher category of maintenance.
Refer to a higher category of mairtenance.
a. Refer to a higher category of maintenance.
b. Refer to a higher category of maintenance.
c. Refer to a higher category of maintenance.
d. Refer to a higher category of maintenance.
e. Replace (para 3-13f).
f. Perform adjustment procedure (para 3-15a).
a. Replace (para 3-13f).
b. Tighten setecrews in knob.
a. Refer to a higher category of maintenance.

Table 3-3. Camera Analyzer DS Troubleshooting - Continued

Motor - tachometer simulator circuit load lampe do not light(atep8).

Vturn indicates low or no voltage(step9).

Vtvm reads greater than 3.0 volts(step 9).
Vtum does not indicate 0 volts (step 10).
No voltage indicated on multimeter (step 11).

No voltage indicated on multimeter (step 12).

Vtvm does not indicate any variation in volv age(siep 13).

Vtum docs not indicate any variation in volt age(step 14).

Digital timer does not indicate (step 15).

Digital timer indication is not within 10 to 15 millisecond time interval (atep 15).
Multimeter does not indicate zero resistance (step 16).
b. Defective relay K3.
c. Defective SCOPE binding posts J20 and J21.
d. Defective MODULE TEST switchS1.
e. Defective motor tachometer simulator circuit.
f. Defective MODULE connector J11.
a. Defective lamp(s) DS 1 through DS4.
b. Dirty lamp terminale,
c. Defective lamp socket(s).
a. Defective motor tachometer simulator circuit.
b. Defective MODULE TEST switch S1.
c. Defective OPERATE OFF switchS15.
d. Defective PLUS OUTPUT switchS14.
e. Defective MASTER switchS1.
f. Defective DC VOLTS binding posts J18 and J19.
Defective OPERATE OFF switch S15.
Defective OPERATE GEF switch S15.
a. Defective LAMP TEST switch S6.
b. Defective DC EXPOSURE switch S13.
c. Defective MODULE connector $J 8$.
a. Defective DC EXPOSURE switchS13.
b. Defective MODULE connector J8.
a. Defective FOOT-LAMBERTS control R4.
b. Defective Assembly A15.
c. Defective TEST switch S10.
d. Defective RANGE switch S11.
a. Defective assembly A15.
b. Defective RANGE switchS11.
a. Defective MASTER switchS1.
b. Defective CYCLE PULSE switch S2.
c. Defective MODE switch S5.
d. Defective recycle initiate circuit.

Recycle initiate circuit out of adjustment.
a. Defective BODY OPR switchS4.
b. Defective BODY connector J3.

A Refer to a higher category of maintenance.
c Replace (para 3-13g).
d Replace assembly A16 (para 3-13i).
c. Refer to a higher category of mantenance.
f. Refer to a higher category of maintenance.
a Replace defective lamp.
b. Clean terminals with fine abrasive,
c. Refer to a higher category of maintenance
a. Refer to a higher category of maintenance.
b. Replace assembly A16 (para 3-13i).
c Replace (para 3-13d).
d Replace (para 3-13c).
e. Refer to a higher category of maintenance.
f. Replace (para 3-13g).

Replace (para 3-13d).
Replace (para 3-13d).
a. Replace (para 3-13b).
b. Replace (para 3-13b).
c. Refer to a higher category of maintenance.
a. Replace (para 3-13b).
b. Refer to a higher category of maintenance.
a. Replace (para 3-13f).

A Refer to a higher category of mainenance,
c Refer to a higher category of maintenance.
d Replace (para 3-13b).
a Refer to a higher category of maintenance.
b. Replace (para 3-13b).
a Refer to a higher category of maintenance.
b. Replace (para 3-13b).
c. Refer to a higher category of maintenance.
d Refer to a higher category of maintenance.
Perform adjustment procedure (para 3-15d).
a Replace (para 3-13b).
b. Refer to a higher catgory of

Table 3-3. Camera Analyzer DS Troubleshooting - Continued
mainterance
a. Replace(para5-136).
b. Refer to a higher category of maintenance
a Replace (para 3-13b).
b. Replace(para 3-13b).
c. Refer to a higher category of maintenance.
d. Reier to a higher category of mainterance.
a. Replace (para 3-13b).
b. Refer to a higher category of maintenance
c. Refer to a higher category of mainterance.
a. Replace (pars 3-13b).
6. Refer to a higher category of maintenance.
a Replace (para 3-13b).
b. Refer to a higher category of maintenance.
a. Refer to a higher category of maintenance.
b. Refer to a higher category of m intenance.
c. Replace(para 3-13g).
d Refer to a higher category of maintenance.
a. Replace (para 3-13g).
b. Refer to a higher category of maintenance.
c. Refer to a higher category of maintenance.

3-8. Camera Analyzer DS Voltage and 3-9. Camera Test Adapter DS TroubleResistance Measurements
Specific point-to-point voltage and resistance measurements are not taken at DS maintenance. The voltage and resistance measurements at DS maintenance are limited to those made in the bench test (para 3-7b above).
a. Camera Test Adapter Bench Test.
(1) Set all controls and switches on the camera test adapter to their off, neutral, or counterclockwise positions.
(2) Connect power cable W9 to a 28 -volt dc power source and to connector J 1 on the camera test adapter.
(3) Perform the procedures in the sequence given in table 3-4.

Table 3-4. Camera Test Adapter Bench Test

Skep	Procedure
1	
2	
3	
4	Jumper + 28-vdc from P2-L or K to P1-V.
5	Jumper + 28-vdc from P2-L or K to P1-U.

LAMP TEST switch: depressed
LAMP TEST switchi released

Result/indication

Power indicator should light.
All indicp ters should light.
All indicators should extinguish except pozer indicator.
DATA indicator should light until jumper is disconnected.
FLASH indicator should light until jumper is disconnected.

Jumper + 28-vde from P2-L or K to P2-P.
Jumper + 28-vdc from P2-L or K to P2-Z.
Jumper +28 -vdc from P2-L or K to P2-c.
Jumper + 28-vdc from P2-L or K to P2-b.
Jumper + 28-vdc from P2-L or K to P1-T.
Jumper + 28-vdc from P2-L or K to P1-L.
Jumper +28 -vdc from P2-L or K to P2-J; jumper ground from P2-A or R to P1-A; and with vtvm set for ac range, connect test leads to terminals 1 (brown lead) and 2 (red lead) of transformer T1.
Same as step 12 except adjust vtvm to read dc volts. Connect the negative test lead to A3-pin 20 and the positive lead to A3-17.
Same as step 13 except jumper ground from P2-A or R to P2-F.
Same as step 14.
Same as step 13 except jumper ground from P2-A or R to P1-a.
Same as step 16.
Same as step 16.
Same as step 16 except jumper +28 vdc from P2-L or K to J2-B.
Disconnect jumper wires and vtvm test leads.

Adjust the multimeter to the resistance range for making continuity checks. Use the RX1 range.
Connect the multimeter test leads to P2-A and P1-E.
Same as step 23.
Connect the multimeter test leads to the COMMON test point and P1-C.
Connect the multimeter test leads to the COMMON test point and P1-K.
Connect the multimeter test leads to the COMMON test point and P1-F.
Same as step 27.
Connect t. .. itimeter leads to the COMMON test point and P1-P.
Same as step 29.
Connect the multimeter test leads to the COMMON test point and P1-J.
Same as step 31.
Connect the multimeter test leads to P2-N and P1-R.
Same as step 33.
To ensure continuity of the remaining interconnecting wires, perform the resistance measurements in table 4-25.

EXPOSURE switch: 44MMCAL

Same as step 12

EXPOSURE switch: 3 IN. CAL.

EXPOSURE switch: 6 IN. CAL. EXPOSURE switch: 12 IN. CAL.

EXPOSURE switch: CPR ALL
EKPOSURE switch: SEN
Same as step 18
POWER switch: OFF
Disconnect power cable W9 from POWER connector J1 of the camera test adapter.

MODE switch AUTO

MODE switch: PULSE
MODE switch: IMC PULSE
MODE switch: NIGHT
EXPOSURE INCR-NORMAL switch: NORMAL
EXPOSURE INCR - NORMAL switch: INCR
EXPOSURE OVER - NORMAL -
UNDER switch: NORMAL
EXPOSURE OVER - NORMAL .
UNDER switch: OVER
EXPOSURE OVER - NORMAL -
UNDER switch: NORMAL
EXPOSURE OVER - NORMAL UNDER switch: UNDER

CYCLE switch: depressed

Vtrm should indicate $134 \pm 6 \mathrm{mv}$.

Remullindication

CYCLE indicator should light un. til jumper is disconnected.
SYNC indicator should liyiht until jumper is disconnected.
FILM FAIL indicator should light until jumper is disconnected.
INTLK indicator should light until jumper is disconnected.
OPR ON indicator should light until jumper is disconnected.
NIGHT indicator should light until jumper is disconnected.
Vtvm should indicate 115 vgc .

Vtum should indicate 1.34 ± 6 mv.

Vtvm should indicate $134 \pm 6 \mathrm{mv}$.

Vtrm should indicate 2.5 vdc .
Vtvm should indicate 0 vdc. Vtvm should indicate $+\mathbf{2 8}$ vdc.

Power indicator should extinguish.
Multimeter should indicate infin-
itiy.
Multimeter should indicate 0
ohms.
Multimeter should indicate 0
ohms.
Multimeter should indicate 0
ohms.

Multimeter should indicate infinity.
Multimeter should indicate 0 ohms.
Multimeter should indicate infinity.
Multimeter should indicate 0 ohms.
Multimeter should indicate infinity.
Multimeter should indicate 0 ohms.
Multimeter should indicate infinity.
Multimeter should indicate 0 ohms.
b. Camera e:t Adapter roubleshooting ro ?dures. i teps r refe ceed i in the Trouble symptom $\boldsymbol{r l}$ mn I in able 3 3-5 refer to numbered steps in the bench test (a above). Electronic parts and $\mathbf{3 8 0 c 1 a t e d}$ C circuits
srerenced $\mathbf{1}^{1}$ in the ounvesnuoung ' table ${ }^{-\cdots}$: shown in the schematic diagram ${ }^{\mathbf{4}} \cdot \overline{\mathbf{I}} \hat{\mathrm{F} O-15}$) and the wiring ${ }^{20}$ gram (fig. PO-16).

Item
 1 Power indicator does not light (step 1).

2
OPR ON indicator does not light (step2)

3
FILM FAIL indicator does not lig...'(step2).

4
INTLK indicator does not light (step2).

5
NIGHT indicator does not light (step2)

6
SYNC indicator does not light(step2).

7
FLASH indicator does not light(step 2)

8
DATA indicator does not light (step2).

9
CYCLE indicator does not light (step2).

Probable trouble

a Lamp DS1 defective.
b. Lamp socket defective.
c. POWER switch S 6 defective.
d. 15 AMP DC fuse $F 2$ defective.
e. Wiring defective.
a. Lamp DS1 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS2 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS3 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS4 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS1 defective.
b. Lamp socket deft itive.
c. Mode and exposure board assembly A3 defective.
d Mode and exposure board as sembly A3 defective.
a. Lamp DS2 defective.
b. Lamp socket defective.
c. LAMP TEST switch S5 defec tive.
d Wiring defective.
a. Lamp DS3 dofective.
b. Lamp socke' defective.
c. LAMP TEST switch S5 defective.
d. Wiring defective.
a. Lamp DS4 defective.
b. Lamp socket defective.

Correction
a. Replace lamp DSI.
b. Replace defective indicator as sembly (para 3-19f).
c. Replace switch S6 (para3-19a).
d. Replace fuse F 2 .
e. Replace defective wiring (fig. FO-16).
a. Replace lamp DS1.
b. Replace defective indicator assembly A1 (para 3-19).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS2.
b. Replace defective indicator assembly A1 (para 3-19f).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS3.
b. Replace defective indicator assembly AI (para 3-19).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS4.
b. Replace defective indicator assembly A1 (para 3-19i).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19).
a Replace lampDS1.
b. Replace defective indicator as sembly A2 (para 3-19).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS2.
b. Replace defective indicator assembly A2 (para 3-19).
c. Replace switch S 5 .
d. Replace defective wiring (fig. FO-16).
a. Replace lamp DS3.
b. Replace defective indicator assembly A2 (para 3-19).
c. Replace switch 35 (para 3-19a).
d. Replace defective wiring (fig. FO-16).
a. Replace lamp DS4.
b. Replace defective indicator assembly A2 (para 3-19).
Damiana Anfontiva wiring (fig
b. Camera Test Adapter Troubleshooting Pro cedures. Steps refe aned in the Trouble symptom column in table 3-5 refer to numbered steps in the bench test (a above). Electronic parts and associated circuits
referenced in the troubleshooting table are shown in the schematic diagram (fig. FO-15) and the wiring diagram (fig. FO-16).

Table 3-5. Camera Test Adapter DS Troubleshooting

Itent	Trouble symptom
1	Power indicator does not light (step 1).

2 OPR ON indicator does not light(step2)

Probable trouble

b. Lamp socket defective.
c. POWER switch 56 defective. d 15 AMP DC fuse F 2 defective. e. Wiring defective.
a. Lamp DS1 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS2 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS3 defective.
b. Lamp socket defective.
c. Wiring defective.
d Mode and exposure board assembly A3 defective.
a. Lamp DS4 defective.
b. Lamp socket defective.
c. Wiring defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS1 defective.
b. Lamp socket defe.tive.
c. Mode and exposure board assembly A3 defective.
d. Mode and exposure board assembly A3 defective.
a. Lamp DS2 defective.
b. Lamp socket defective.
c. LAMP TEST switch S5 defective.
d. Wiring defective.
a. Lamp DS3 dofective.
b. Lamp socke' defective.
c. LAMP TEST switch S5 defective.
d Wiring defective.
a. Lamp DS4 defective.
b. Lamp socket defective.
c. Wiring defective.

Correction

a. Replace lamp DS1.
b. Replace defective indicator assembly (para 3-19).
c. Replace switch S6 (para3-19a).
d. Replace fuse F 2 .
e. Replace defective wiring (fig. FO-16).
a. Replace lamp DS1.
b. Replace defective indicator assembly A1 (para 3-19f).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS2.
b. Replace defective indicator a\& sembly A1 (para 3-19).
c. Replace defective wiring (fig. FO-16).
d Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS3.
b. Replace defective indicator as sembly AI (para 3-19f).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board as sembly A3 (para 3-19i).
a. Replace lamp DS4.
b. Replace defective indicator assembly A1 (para 3-19i).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19).
a Replace lamp DS1.
b. Replace defective indicator assembly A2 (para 3-19f).
c. Replace defective wiring (fig. FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace lamp DS2.
b. Replace defective indicator assembly A2 (para 3-19).
c. Replace switch $\mathbf{S 5}$.
d. Replace defective wiring (fig. FO-16).
a. Replace lamp DS3.
b. Replace defective indicator as sembly A2 (para 3-19).
c. Replace switch 35 (para 3-19a).
d. Replace defective wiring (fig. FO-16).
a Replace lamp DS4.
b. Replace defective indicator assembly A2 (para 3-19).
c. Replace defective wiring (fig.

Table 3-5. Camera Test Adapter DS Troubleshooting-Continued

OPR ON, FILM FAIL, INTLK, and NIGHT indicators do not light (step2).

SYNC, FLASH, DATA, and CYCLE indicators do not light(step2).
N_{j} indicators light except the power indicator (step2).
DATA indicator does not light(step4).

4 N - SH indicator does not light (step5).

CYCLE indicator does not light (step6). SYNC indicator does not ligitt (step 7).

FILM FAIL indicator does not lighi(step8). INTLK indicator does not light (stepS). OPR ON indicator does not light (step 10).

NIGHT indicator does not light (step 11).
Vtvm does not indicate 115 vac when ac input to power transformer is checked (step 12).

Incorrect vtum indication for EXPOSURE switch setting (steps $13,14,15,16$).

No vtvm indication when EXPOSURE switch is set at 44 mm CAL (step 13).

No vtvm indication when EXPOSURE switch is set at 3 IN. CAL (step 14).

No vtvm indication when EXPOSURE switch is set at 6 IN. CAL (step 15).

Probable trouble

d. Mode and exposure bor rd assembly A3 defective.
 a. Multiplesection indicator.
 b. Wiring defective.
 a. Multiplesection indicator as sembly.
 b. Wiring defective.
 Wiring defective.

a. LAMP TEST switch S5 defec tive.
b. Wiring defective.
c. Mode and exposure board assembly A3 defective.
a. LAMP TEST switch S5 defective.
b. Wiring defective.
c. Mode and exposure board assembly A3 defective.
Wiring defective.
Wiring defective.
Wiring defective
Wiring defective.
Wiring defective.
Wiring defective.
a. POWER switch $\mathrm{S6}$ defective.
b. 1.5 AMP DC fuse F 1 defective.
c. EXPOSURE switch S2A defective.
d. Wiring defective.
e. Mode and exposure board assembly A3 defective.
a. Variable control R11 or R12 misaligned.
b. Mode and exposure board as sembly A3 defective.
a. Mode and exposire board assembly A3 defective.
b. Mode and exposure board assembly A3 defective.
c. Wiring defective.
2. Wiring defective
b. Mode and exposure board assembly A3 defective.
a. Mode and exposure board assembly A3 defective
b. Mode and exposure board. .sembly A3 defective.
c. Wiring defective.

FO-16).
d. Replace defective board assembly A3 (para 3-19i).
a. Replace indicator assembly A1 (para 3-19).
b. Replace defective wiring (fig. FO-16).
a. Replace indicator assembly A2 (para 3-19f).
b. Replace defective wiring (fig. FO-16).
Replace defective wiring (fig. FU-16).
a. Replace switch S5 (para 3-19b).
b. Replace dr ectiv wiring (fig. FO-16).
c. Replace board assembly A3 (para 3-19i).
a. Replace ε^{-}:h S5 (para 3-19b).
b. Replace defective wiring (fig. FO-16).
c. Replace defective board assembly A3 (para 3-19i).
Rephace defective wiring (fig. $\mathrm{FO}-16$).
Replace defective wiring (fig. FO-16).
a. Replace switch S 6 (para, i-19a).
b. Replace fuse F1.
c. Same as item 21 b above.
d. Replace defective wiring (fig. FO-16).
e. Replace defective board assembly A3 (para 3-19i).
a. Refer to higher category of maintenance.
b. Replace defective board assembly A3 (para 3-19i).
a. Replace defective board assembly A3 (jara 3-19i).
b. Same as itema above.
c. Replace defective wiring (fig. FO-16).
a. Replace defective wiring (fig. FO-16).
b. Replace defective board assembly A3 (para 3-19i).
a. Replace defective board assembly A3 (para 3-19i).
b. Same as itema above.
c. Replace defective wiring FO-1ti).

Table 3-5. Camera Test Adapter DS Troubleshooting-Continued
$\begin{array}{lc}\text { Itsm } & \text { Trouble symptom } \\ 26 & \text { No vtvm indication when EXPOSURE switch }\end{array}$ is set at 12 IN. CAL (step 16).

27 No vtrm indication when EXPOSURE switch is set at OPR ALL (step 17).

28 No vtvm indication when EXPOSURE switch is cet at SEN (step 19).

29 Vtvm does not indicate continuity when MODE switch is, set at PULSE (step 24).

30 Vtum does not indicate continuity when MODE switch is set at IMC PULSE (step 25).

31 Vtvm does not indicate continuity when MODE switch is set at NIGHT (step 26).

32 Vtvm does not indicate continuity when EX. POSURE INCR-NORM switch is set at NORM (step27).

33 Vtum does not indicate continuity when EX. POSURE INCR-NORM switch is set at INCR (step 28).

34 Vtvm does not indicate continuity when EXPOSURE OVER-NORMAI-UNDER switch is set at OVER (step 30).

35 Vtvm does not indicate continuity when EXPOSURE OVER-NORMALUNDER switch is at UNDER (step 32).

36 Vtvm does not indicate continuity when CYCLE switch is depressed (step 34).

Probable trouble
a. EXPOSURE switch S2 defective.
b. Mode and exposure board assemrbly A3 defective.
\therefore Wiring defective.
a. EXPOSURE switch $\mathbf{S 2}$ defective.
b. Mode and exposure board assembly A3 defective.
c. Wiring defecive.
a EXPOSURE switch S 2 defective.
b. Wiring defective.
a. MODE switch S1 defective.
b. Wiring defective
a. MODE switch Sl defective.
b. Wiring defective.
a. MODE switchS1 defective.
b. Wiring defective.
a. EXPOSURE INCR-NORM switch S3 defective.
b. Wiring defective.
a. EXPOSURE INCR-NORM switch S3 defective.
b. Wiring defective.
a. EXPOSURE OVER-NORMAL UNDER switchS4 defective.
b. Wiring defective.
a. EXPOSURE OVER-NORMAL

UNDER switchS4 defective.
b. Wiring defective.
a. CYCLE switch S7 defective.
b. Wiring defective.

Comection
a. Refer to a higher category of maintenance.
b. Replace defective board assembly A3 (para 3-19i).
c. Replace defective wiring (fig. $\mathrm{FO}-16)$.
a. Refer to a higher category of maintenance.
b. Replace defective board assembly a 3 (para 3-19i).
c. Replace defective wiring (fig. FO-16).
a. Refer to a higher category of maintenance.
b. Replace defective wiring (fig. FO-16).
a. Refer to a higher category of maintenance.
b. Replace defective wiring (fig. FO-16).
a. Refer to a higher category of maintenance.
b. Replace defective wiring (fig. FO-16).
a. Refer to a higher category of maintenance.
b. Replace defective wiring (fig. FO-16.
a. Replace switch Si (para 3-19a).
b. Replace defective wiring (fig. FO-16).
a. Replace switch S3 (para 3-19a).
b. Replace defective wiring (fig. FO-16).
a. Replace switch S4 (para 3-19a).
b. Replace defective wiring (fig. FO-16).
a. Replace switch S4 (para 3-19a).
b. Replace defective wiring (fig. FO-16).
a. Replace switch S7 (para 3-19b).
b. Replace defective wiring (fig. FO-16).

3-10. Camera Adapter DS Voltage and Resistance Measurements
Specific point to point voltage and resistance measure-
ments are not taken at DS maintenance. The voltage and resistance measurements at DS maintenance are limited to those rrade in the bench test (para 3-9a).

Section IV. DS MAINTENANCE OF CAMERA ANALYZER

WARNING

Disconnect the power source from the equipment when making repairs.

3-11. Camera analyzer Parts Replacement Techniques

All parts and assemblies in the camera analyzer can
easily be reached without any special procedures. The following precautions apply:
a. Before any part is removed, not the positior of the part and its leads. Wire replacement parts in the same posicion to avoid undes rest coupling and shorting together of wires. If neccearary, mark or tag each wire before disconnecting the wire.
b. The printed circuit board and component assembly contain four adjustments, R2, R18, R20, and R23. Each of these adjustments is critical to the overall performance of the camera analyzer. Whenever the printed board and component assembly is replaced, all adjustments should be ry - . before placing the camera analyzer in serving.

3-12. Consideration Measure Disassembling Camera Analyzer.

Localizing wrouble in the camera analyzer (para 3-7) can simplify repairs by limiting the work to the defective area. Disassemble the camera analyzer only to the level necessary to correct the fault

3-13. Camera Analyzer DS Replacement

 Procedure (fig. FO-17)a. Replacement of Indicator Lamp Assemblies (fig. 3-3). To replace any front panel indicator lamp assembly, proceed as follows:
(1) Set POWER switch to OFF.
(2) Disconnect power cable W9 from POWER connector J1.
(3) Remove 14 screws (1) and remove test panel (48) from combination case (47).
(4) Unsolder and carefully mark or tag all electrical connections to indicator lamp assembly.
(5) Insert fingernails in cutouts in lens assembly (fig. 3-3) and pull lens away from indicator body.
(6) Rotate lens 90 degrees counterclockwise, push in slightly to remove tension on index key, and pull complete bulb assembly to stops on indicator body.
(7) Using screwdriver, loosen two screws on inside of indicator body by rotating counterclockwise until screw tabs are loose, and free mounting support
(8) Slide mounting support from test panel in direction of arrow.
(9) Remove indicator body from front panel.
(10) Replace the indicator assembly by reversing steps (4) through (8).
(11) Replace the test panel (48, fig. FO-17) in the combination case (47) by replacing 14 screws.
b. Replacement of Toggle Type Switches. (CYCLE PULSE S2 (28), SIM OPR S3 (27), BODY OPR S4 (24), LAMP TEST S6 (39), POWER S7 (27), RANGE S11 (24), EXPOSURE S12 (26), or DC EXPOSURE S13 (25).) To replace a toggle type switch, proceed as follows:
(1) Perform steps in $\mathrm{a}(1)$, (2), and (3) above.
(2) Unsolder and carefully mark or tag all electrical connections on rear of toggle switch (24).
(3) Remove nut (24 ref), lockwasher (24 ref), key washer (24 ref) and if necessary, locknut (24 ref) securing switch (24) to test panel (48) and carefully remove switch from rear of test panel.
(4) Replace the toggle switch (24) by reversing steps in (2) and (3) above.
(5) Replace the teat panel (48) in the combination case by replacing 14 screws.
c. Replacement of PLUS OUTPUT Switch S14. To replace PLUS OUTPUT switch S14 (3), proceed as follows:
(1) Perform steps in $\mathrm{a}(1)$, (2), and (3) above.
(2) Unsolder and carefully mark or tag all electrical connections on rear of switch (3).

EL6760 239-34-TM-10
Figure 3-3. Replacement of indicator lamp assembly.
(3) Remove nut (3 ref) and lockwasher (3 ref) from rear of test, panel (48) and carefully remove switch (3) from front of test panel
(4) Replace the PLUS OUTPUT switch by reversing (2) and (3) above.
(5) Replace the test panel in the combination case by replacing 14 screws.
d. Replacement of OPERATE OFF Switch S15. To replace OPERATE OFF switch S15 (4), proceed as follows:
(1) Perform steps in $u(1)$, (2), and (3) above.
(2) Unsolder and carefully mark or tag all electrical connections on rear of switch (4).
(3) Remove facenut (5) and washer (6) from front of test panel (48) and carefully remove lockwasher (7), keywasher (4 ref), and switch (4) from rear of test panel.
(4) Replace the OPERATE OFF switch by reversing steps in (2) and (3) above.
(5) Replace the test panel in the combination case by replacing 14 screws.
e. Replacement of Motor Tachometer Simulator Circuit Load Lamps, proceed as follows:
(1) Perform steps in $\mathrm{a}(1)$, (2), and (3) above.
(2) Rotate bulb of lamp (46) counterclockwise until it is loose in socket and remove lamp.
(3) To install replacement lamp, insert in socket and rotate clockwise.
(4) Replace the test panel in the combination case by replacing 14 screws.
f. Replacement of E V/H Control R3 (21) or FOOT LAMBERTS Control R4 (23) To replace potentiometer R3 and R4, proceed as follows:
(1) Perform steps in a(1), (2), and (3) above.
(2) Unsolder and carefully mark or tag the electrical connections on rear of potentiometer (21).
(3) Loosen hex head setscrew (22 ref) on dial (22), and remove dial from shaft of potentiometer (21).
(4) Remove nut (21 ref), and washer (21 ref) and key washer (21 ref) if required, from potentiometer.
(5) Carefully remove potentiometer (21) from rear of test panel (48).
(6) Replace the potentiometer (21) by reversing steps in (2) through (5) above.
(7) Replace the test panel in the combination case by replacing 14 screws

NOTE

Whenever the E V/H control is replaced, perform the adjustment procedure of paragraph 3-15a.
g. Replacement of Binding Posts. To replace a binding post (J 12 through J21) (34 and 36), proceed as follows
(1) Perform steps in a (1), (2), and (3) above.
(2) Remove nut (34 ref) from rear of binding post (34).
(3) Remove lug and soldered lead (35) from rear of binding post (34).
(4) Remove second nut (34 ref), washer (34 ref) and insulator spacer (34 ref) from rear of terminal (34).
(5) Remove binding terminal (34) from front of test panel (48).
(6) Replace the binding post (34) by reversing steps in (2) through (5) above.
(7) Replace the test panel in the combination case by replacing 14 screws.
h. Replacement of Indicating Type Fuseholders (AC and DC). To replace an indicating type fuseholder (AC, XF1) (31) or (DC, XF2) (33), proceed as follows:
(1) Perform steps in a(1), (2), and (3) above.
(2) Unsolder and tag the two electrical connections from rear of fuseholder (31).
(3) Remove nut (31 ref) and washer (31 ref) from rear of fuseholder (31).
(4) Carefully remove fuseholder (31) from front panel (48).
(5) Replace the indicating type fuseholder (31) by reversing steps in (2) through (4) above.
(6) Replace the test panel in the combination case by replacing 14 screws.
i. Replacement of Printed Circuit Board and Components Assembly A16. To replace the printed circuit board and components assembly A16, proceed as follows
(1) Perform steps in a(1), (2), and (3) above.
(2) Loosen two set screws (38 ref) on MODULE TEST, TEST and CONFIGURATION switches (40 ref) (CONTROL POWER SUPPLY section) and remove knobs (38).
(3) Remove nuts (40 ref) and washers (40 ref) from each of the three switches. These switches are mounted on the printed circuit board and component assembly (40).
(4) Remove four screws (44) mounting the connector mounting bracket and nut assembly (45) to the printed circuit board mounting bracket and nut assembly (41).
(5) Disconnect the connector mounting bracket and nut assembly (45) from the printed circuit board and components assembly (40).
(6) Remove the six screws (42) and washers (43) mounting the printed circuit board and components assembly (40) to the printed circuit mounting bracket and nut assembly (41).
(7) Carefully remove the printed circuit board and components assembly (40).

CAUTION

The three rotary switches have stops which may become free when removing the printed circuit board and components assembly from the chassis Be careful to maintain these stops in their positions.
(8) Replace the printed circuit board and components assembly (40) by reversing steps in (2) through (7) above.
(9) Replace the teat panel in the combination case by replacing 14 screws.

3-14. Repair of Camera Analyzer Cable

Assemblies and Accessories
a Disassembly and Reassembly of Cable Assemblies. Disassembly and reassembly of the camera analyzer cable assemblies are obvious from the parts location drawings (fig. FO-18) and upon inspection of the cable. Perform the disassembly and reassembly procedures on the cable assemblies in accordance with
the appropriate drawing. Refer to the cable assemblies wiring diagrams in TM 11-6760-239-12 when performing continuity checks.
b. Exposure Test Adapter. Disassembly and reassembly of the exposure test adapter is obvious from the parts location drawing (fig. 3-4) and upon inspection of the adapter. Perform the disassembly and reassembly procedures on the exposure test adapter in accordance with figure 3-4.
c. Module Test Adapter. Disassembly and reassembly of the module test adapter is obvious from the parts location diagram (fig. 3-5) and upon inspection of the adapter. Perform the disassembly and reassembly procedures on the module test adapter in ac-

Figure 3-4. Exposure test adapter parts location.
cordance with the parts location diagram.

3-15. Camera Analyzer Adjustment (fig. 3 -6)

The camera analyzer has four internal adjustments as shown in figure 3-6. These adjustments are performed without the use of special test equipment. These adjustments are: simulated E V/H output (a below), photocell output simulator (b below), simulated exposure feedback (c below), and recycle initiate circuit timing (d below). All adjustments are located on printed circuit and components assembly A16 and are performed with the test panel removed from the combination case.
a. Simulated E V/H Output Adjustment. To adjust the simulated E V/H output circuit, proceed as follows
(1) Se: POWER switch (PANEL POWER section) to OFF.
(2) Connect the vtvm to the DC VOLTS INPUT
and GRD terminals (MASTER section).
(3) Set MASTER switch to INTERNAL TEST 2.
(4) Set E V/H control (CONTROL-POWER SUPPLY section) to maximum clockwise position
(5) Set POWER switch (PANEL POWER section) to ON .
(6) Adjust resistor R18 to obtain vtvm indication of 50 ± 0.5 volts dc.
(7) Set E V/H control (CONTROL-POWER SUPPLY section) to obtain vtvm indication of 1 volt.
(8) Observe E V/H dial indication. If dial indication is not 1 volt ± 1 millivolt, note number of dial divisions deficient. by or in excess of the 1 volt indication. Rotate dial to its clockwise or counterclockwise stop, depending upon direction of dial error. Loosen hex head setscrew and adjust dial to correct error between dial and vtvm indication. Tighten setscrew.
(9) Repeat steps in (7) and (8) below until no further mechanical adjusting of dial is necessary.

Key to fig. $3-5$:
1 Connertor J1
2 Connector J2
3 Connector.$J 3$
4 Circuit board guide (6)
is Screw, machine (4)

6	Washer, flat (10)	12 Nut, self-locking hexagon (4)
7 Lockwasher (10)	13 Screw machine (7)	
8 Screw, machine (4)	14 Lockwasher(19)	
9 Bumper, rubber (4)	15 Terminal, stud (7)	
10 Washer, flat (8)	16 Plug, tip, black (6)	
11 Screw, machine(4)	17 Clip, red	

Figure 3-5. Module test adapter, parts location.
(10) Set E V/H control to 50.
(11) Observe vtvm indication. If indication is not 50 volts, readjust variable resistor R18 to obtain vtvm indication of 50 volts ± 0.1 volt dc.
b. Photocell Output Simulator Adjustment. To adjust the photocell output simulator circuit, proceed as follows:
(1) Set POWER switch (PANEL POWER section) to OFF.
(2) Connect vtvm to DC VOLTS INPUT and GRD terminals (MASTER section).
(3) Set MASTER switch to INTERNAL TEST 1.
(4) Set POWER switch (PANEL POWER section) to ON .
(5) Adjust variable resistor R23 to obtain voltmeter indication of -3.34 volts ± 50 millivolts dc.
c. Simulated Exposure Feedback Adjustment. To adjust the simulated exposure feedback circuit, pro ceed as follows:
(1) Set POWER switch (PANEL POWER section) to OFF.
(2) Set TEST switch (LENS CONE section) to CAL.
(3) Connect vtvm, adjusted to indicate in millivolt range, between J6, pin W, and ground
(4) Set POWER switch (PANEL POWER section) to ON.
(5) Adjust variable resistor R20 to obtain a vtvm indication of 25 millivolts ± 1 millivolt dc.
d. Recycle Initiate Circuit Timing Adjustment. To adjust the recycle initiate circuit timing, proceed as follows:
(1) Set POWER switch (PANEL POWER section) to OFF.
(2) Connect the digital timer to the test panel in the following manner, connect the BNC adapter 1269 (part of camera analyzer) to the PULSE TIMER terminals (MASTER section). Connect the B input of the pulse timer to the SCOPE VERT terminal.
(3) Set MASTER switch to INTERNAL TEST 1.
(4) Set MODE switch (CAMERA BODY section) to AUTO.
(5) Set POWER switch (PANEL POWER section)

Figure 3-6. Camera analyzer, adjustments.
to ON .
(6) Set CYCLE PULSE switch (CAMERA BODY section) to MANUAL momentarily.
(7) Observe digital timer indication; if indication is not between 10 and 15 milliseconds, adjust resistor R2, and repeat step (6).
(8) Repeat (7) above until digital timer indication between 10 and 15 milliseconds is obtained.

3-16. Cleaning Camera Analyzer Mechanical Parts and Electrical Contacts
 WARNING

The fumes of trichloroethane are toxic. Provide thorough ventilation whenever used. DO NOT use near an open flame. Trichloroethane is not flammable, but exposure of the fumes to an open flame converts the fumes to highly toxic dangerous gases.
To remove grease or dirt from mechanical parts or electrical contacts, wipe the area to be cleaned with a cloth moistened (not wet) with trichloroethane. If it is available, dry the parts with compressed air or wipe them dry with a clean lintfree cloth. Do not allow lint or foreign matter to remain between surfaces of any parts.

Section V. DS MAINTENANCE OF CAMERA TEST ADAPTER

W ARNING

Disconnect the power source from the equip ment when making repairs.

3-17. Camera Test Adapter Parts Replacement Techniques

All parts in the camera test adapter can be reached' easily and replaced without special procedures. The following precautions apply:
a Before any part is removed, note the position of the part and its leads. Wire replacement parts in the same position so as to avoid undesired coupling and shorting together of wires. If necessary, mark or tag each wire before disconnecting the wire.
b. Do not disturb the settings of exposure control variable resistors R11 and R12 while repairing the equipment. These settings should be changed only if realignment becomes necessary.

3-18. Considerations Before Disas-

 sembling Camera Test Adapter3-9) can simplify repairs by limiting the work to the defective area. Disassemble the camera test adapter only to the level necessary to correct the fault

3-19. Camera Test Adapter DS Replace-
ment Procedures
(fig. 3-7)
a. Replacement of Toggle Switches. Remove any of the toggle switches (7,9 , and 10) from the camera test adapter as follows:
(1) Remove the camera test adapter case rear cover (1) for access to internal parts; it is attached to the camera test adapter front cover (2) by four slottedhead screws (3) and flat washers (4).
(2) Unsolder and carefully mark or tag all electrical connections to the part which is to be removed.
(3) Remove the knurled nut, lockwasher and key washer (ref. 7) which secure the switch in place. This hardware is located on the front cover of the case.
(4) Replace the switch or its substitute. and reassemble the camera test adapter by reversing (1), (2), and (3) above.

NOTE

If a switch is found to be defective and must be substituted, ensure that any lugs used with the defective switch are installed on its replacement before mounting the new switch
b. Replacement of Pushbutton Switches.
(1) Perform steps in a(1) and (2) above.
(2) Remove the hex nut and lockwasher (ref. 11) from the switch (11) which are accessible on the rear side of the front cover, then remove the switch through the from cover.
(3) Remount the switch by reversing the procedure in step (2) above.
(4) Reassemble the camera test adapter by reversing steps in a(1) and (2) above.
c. Replacement of Rotary Switch Assemblies. The rotary switches (13 and 14) of the camera test adaptor on the mode and exposure board assembly cannot be replaced at direct support maintenance. Instead, the mode and exposure board assembly must be replaced to effect a switch substitution. For replacement of rotary switch assemblies, refer to higher category of maintenance.
d. Replacement of Binding Post Terminal Assemblies.
(1) Perform steps in a(1) and (2) above.
(2) Remove the hex nut, flat washer, and insulating washer (ref. 15) which secure the binding post terminal assembly (15) in place, then slide the terminal assembly through the front cover. This hardware is lo
cated on the rear side of the camera test adapter front cover.
(3) Replace the assembly or its substitute by reversing the procedure given in (2) above.
(4) Reassemble the camera test adapter by reversing steps in $\mathrm{a}(\mathrm{l})$ and (2) above.
e. Replacement of Active and Spare Fuseholder Assemblies.
(1) Perform steps in a(1) and (2) above.
(2) Remove the hex nut and lockwasher (ref 18) which secures the fuse holder assembly (18) in place. It is located on the rear side of the camera test adapter front cover.

NOTE

The hex nut has a special cut-out on its inner dimension to clear the lug on the back end of the fuseholder assembly.
(3) Replace the fuseholder assembly or its substitute be reversing the procedure given in (2) above.
(4) Reassemble the camera test adapter by reversing steps (1) and (2) of paragraph a above.
f. Replacement of Multiple-Section Indicator Assemblies.
(1) Perform steps in a(1) and (2) above.
(2) Insert fingernails in cut-out lens (fig. 3-3), and pull lens away from indicator assembly.
(3) Rotate lens 90 degrees counterclockwise, push in slightly to remove tension on index key, then pull complete bulb assembly from indicator body as far as the mechanical stop will allow.
(4) Using screwdriver, loosen two screws on inside of indicator body by rotating counterclockwise until tabs are loose and free from the mounting supports.
(5) Slide mounting support from camera test adapter in direction of arrow.
(6) Remove the indicator body from the front cover.
(7) Instill the replacement indicator lamp assembly by reversing steps in (2) through (6) above.
(8) Reassemble the camera test adapter by reversing steps in $\mathrm{a}(1)$ and (2) above.
g. Replacement of Pendant Connector Cables.
(1) Perform steps in a(1) and (2) above.
(2) Open the tie wrap (35, fig. 3-7) on the clamp (34) then remove the cable harness from the clamp.
(3) Remove the cable by pulling through grommet (28) on top of the front cover.
(4) Replace the cable by reversing steps (2) and (3) above.

NOTE

Item 36 is similar to item 29 except that it only supports one cable harness.
(5) Reassemble the camera test adapter by reversing steps in $\mathrm{a}(\mathrm{l})$ and (2) above.
h. Removal of Connectors.
(1) Perform steps in a(1) and (2) above.
(2) Release connector (42 or 45) by removing four screws (43) and hex nuts (44).
(3) Install the replacement connector by reversing the procedure given in (2) above.

NOTE

Remember to reconnect terminal lug (46)
when replacing the connector.
(4) Reassemble the camera test adapter by reversing steps in a(1) and (2) above.
i. Removal of Printed Circuit Board
(1) Perform steps in a(1) and (2) above.
(2) Remove the knobs (12), hex nuts, and washers (ref. 13) from the two rotary switches (13 and 14) on the front cover.
(3) Remove the two screws (49) and flat washers (31) to release the right side and left side bracket and nut assemblies which secure the printed circuit assembly to the front cover.
(4) Remove the printed circuit assembly through the opening at the back of the front cover.
(5) Install the replacement printed circuit assembly by reversing the procedures given in steps (3) and (4) above.
(6) Reassemble the camera test adapter by reversing step (2) of this subparagraph as well as a(1) and (2) above.

3-20. Cleaning Camera Test Adapter Mechanical Parts and Electrical Contacts
 WARNING

The fumes of trichloroethane are toxic. Provide thorough ventilation whenever used, DO NOT use near an open flame. Trichloroethane is not flammable, but exposure of the fumes to an open flame converts the fumes to highly toxic dangerous gases.
To remove grease or dirt from mechanical parts or electrical contacts, wipe the area to be cleaned with a cloth moistened (not wet) with trichloroethane. If it is available, dry the parts with compressed air or wipe them dry with a clean lintfree cloth. Do not allow lint or foreign matter to remain between surfaces of any parts.

Section VI. DS TESTING PROCEDURES

3-21. Direct Support Test Information

a. Direct support test procedures are prepared for use by direct support maintenance personnel and service organizations responsible for direct support maintenance of electronic equipment to determine the acceptability of repaired electronic equipment These procedure-s set forth specific requirements that repaired electronic equipment must meet before it is returned to the using organization.
b. Direct support testing procedures consist of a physical test and inspection and an electric test. These tests are described in paragraphs 3-24 through 3-27.

```
3-22. Test Equipment and Tools Required
    for Direct Support Tests
    a. Test Equipment.
    (1) Multimeter TS-352B/U.
    (2) Voltmeter, Electronic ME-202A/U.
    (3) Timer, Digital Electronic LA-387A.
    (4) Oscilloscope AN/USM-281A.
    b. Tools
    (1) Tool Kit, Photographic Repair TK-109/GF.
    (2) Tool Kit, Photographic Repair TL-77/GF.
```


3-23. Special Requirements

Fabrication of a test drive generator is required for the performance of the direct support testing procedures for the camera analyzer. Refer to paragraph 3-7 for fabrication details.

3-24. Camera Analyzer DS Physical Tests

 and Inspectiona Tools, Test Equipment, and Materials. The test equipment and materials required for the camera analyzer physical tests and inspection are listed in table 3-6.
Table 3-6. Tools, Test Equipment, and Materials Required for Camera Analyzer DS Physical Tests and Inspection
$\begin{array}{cc}\text { Item } & \text { National stock number } \\ \text { Tool Kit, Photographic Repair TK-77/GF } & 5180-00-752-9068\end{array}$
Vacuum cleaner
Lint-free cloth
Trichloroethane
Camel's hair brush 5180-00-752-9068
$7910-00-215-5786$ $7910-00-215-5786$
$8305-00-170-5062$
6810-00-664-0273
Fungus removal solution
8020-00-245-4509
b. Test Connections camera anayzer test panel from its combination case (para 3-13a). Refer to the parts location illustration (figs. FO-17 and FO-18) when performing the physical tests and inspection

c. Procedure.

[^0]

Key to fig. 3-7.

1 Rear cover	
2 Pront cover	
3 Screw (4)	
4 Washer (4)	
5 Identification plate	
5	Foot(4)
7 Switch toggle, EXPOSURE INCR-NORM S3 (mounting hardware included with switch)	
3 Terminal(2)	
	Switsh toggle. EXPOSURE OVER'ORMAL-UNDER (Mounting hardware included with switch.)
10 Switch toggle, POWER S6 (Mounting hardware included with switch)	
11 Switch, pushbuttom CYCLE S7 (Mounting hardware included with switch)	
12 Knob(2)	
13	Switch, rotary, EXPOSURE S2 (Mounting hardware included withswitch)
14 Switcil rotary, MODES1	
15	Terminal (3)
16 Post, binding (2); EXPOSURE J3 and TACH J4	
17 Post binding COMMON J5	
18 Fuse holder (4); 1.5 AMP DC SPARE, 15 AMP DC, and SPARE	
19 Fuse (2)(1.5 AMP)	
20 Fuge (2) (15 AMP)	
21 Indicator assembly, OPR ON, FILM FAIL, INTLK, and NIGHT lights (Mounting hardware included with indicator assembly.)	
22 Indicator assembly; SYNC, FLASH, DATA, and CYCLE lig (Mounting hardware included with indicator assembly.)	
23 Pendant connector P3	
24	Sleeving (5/8 in. I.D. $\times 2 \mathrm{in} .1 \mathrm{~g}$)
	c. Procedure-Continued

1 Rear cover

25 Sleeving(1/2 in. I.D. $\times 2 \mathrm{in} .1 \mathrm{~g}$)
26 Sleeving (3/8 in. I.D. $\times 2 \mathrm{in}$. lg)
27 Sleeving (1/4 in. I.D. $\times 2$ in. lg)
28 Grommet
29 Support
30 Serew (4)
31 Washer(6)
32 Screw (3)
33 Washer(3)
34 Clamp(3)
35 Tie wrap (3)
36 Support
37 Pendant connector P1
38 Sleeving ($1 / 4 \mathrm{in}$. I.D. $\times 30 \mathrm{in} .1 \mathrm{lg}$)
39 Pendant connector P2
40 Sleeving ($5 / 16 \mathrm{in} .1 . D . \times 30 \mathrm{in} . \mathrm{lg}$)
41 Grommet(2)
42 Connector $\$ 1$
43 Screw (8)
44 Nut(8)
45 Connector J2
46 Terminal(2)
47 Switch, toggle, LAMP TEST
48 Shield, knurled
49 Screw (6)
50 Washer (4)
51 Bracket and nut assembly, left side
52 Bracket and nut assembly, right side
53 Mode and exposure board and switch assembly
54 Light assembly, indicator, power

Step	Test	Equipment
Na.	equipment	undertest

2	$\mathrm{~N} / \mathrm{A}$	N / A
3	$\mathrm{~N} / \mathrm{A}$	N / A
4	$\mathrm{~N} / \mathrm{A}$	N / A

Test procedures missing screws, bolts. and nuts. b. Inspect indicator assemblies for damage. c. Check operating fuses for proper rating. See that SPARE fuseholders contain fuses with proper rating.
d. Inspect wiring for cuts, breaks, and damaged insulation.

WARNING
The fumes of trichloroethane are toxic. Provide thorough ventilation whenever used. DO NOT use near an open flame. Trichloroethane is not flammable but exposure of fumes to open flame converts fumes to highly toxic, dangerous gases.
f. Inspect interior of chassis for signs of dirt or fungus. Remove dirt with lint-free cloth dampened with trichloroethane or fungus removal solution.
g. Inspect condition of finish and panel lettering.

NOTE
Touch up painting is recommended in lieu of refinishing whenever practicable Screwheads, biding posts, receptacles. and plated fastener parts will not be painted or polished with abrasives.
inspect cable assemblies for cuts. breaks. damaged insulation, or broken connectors.
Inspect camera analyzer accessories for missing hardware. damage and completeness (TM 11-6760-239-12).
Inspect combination case for damage. See that there are no missing screws and hardware from mounts.

Performance standard

none missing.
b. No evidence of damage.
c. Operating fuses must be damaged and must be of proper rating. Each SPARE fuseholder must contain a fuse of proper rating.
d. Wiring must be free of cuts. breaks, and damaged insulation.
f. Interior of chassis must be clean with no signs of dirt or fungus.
g. External surfaces must be in good condition and panel lettering must be legible.

Cable assemblies must be free of cuts, breaks. damaged insulation, or broken connectors. Accessories must be free of damage and no parts missing and complete.

Combination case must be free from damage and no parts missing

3-25. Camera Analyzer DS Electrical Test

a. Tools, Test Equipment and Materials.
(1) Multimeter TS-352B/U.
(2) Voltmeter, Electronic ME-202A/U.
(3) Timer, Digital, Electronic LA-387A.
(4) Oscilloscope AN/USM-281A.
(5) Tool Kit, Photographic Repair TK-77/GF.
(6) Tool Kit, Photographic Repair TK-109/GF.
b. Test Conditions and Connections.
(1) Fabricate the test drive generator in accordance with figure 3-1.
(2) Connect the camera analyzer and test equipment as shown in figure 3-2.
c. Procedure. Perform the bench test as described in paragraph 3-7 b.

3-26. Camera Test Adapter DS Physical Tests and Inspection
a Test Equipment and Materials. The test equip ment and materials required for camera test adapter physical tests and inspection are listed in table 3-7.

Table 3-7. Tools, Test Equipment, and Materials Required for Camera Test Adapter Physical Tests and Inspection Item National stock number
Tool Kit Photographic Repair TK-77/GF 5180-00-752-9068
Vacuum cleaner
7910-00-215-5786
Lint-free cloth 8305-00-170-5062
Trichloroethane 6810-00-664-0273
Camel's hair brush
8020-00-245-4509 6850-00-133-0695
b. Test Connections and Conditions. Remove the camera test adapter cover (para 3-19a). Refer to the parts location illustration (fig. 3-7) when performing the physical tests and inspection.
c. Procedure.

Test procedures
On the camera test adapter front panel make the following checks and inspections:
a. Inspect all controls and switches for loose or missing screws, bolts, and nuts.
b. Inspect indicator assemblies for damage.
c. Check operating fuses for proper rating. See that SPARE fuseholders contain fusf; with proper rating.
d. Inspect wiring for cuts, breaks, and damaged insulation. WARNING
The fumes of trichloroethane are toxic. Pro vide thorough ventilation whenever used. DO NOT use near an open flame. Trichloroethane is not flammable, but exposure of fumes to open flame converts fumes to highly toxic, dangerous gases.
f. Inspect interior of chassis for signs of dirt or fungus. Remove dirt with lint-free cloth dampened with trichloroethane or fungus removal solution.
g. Inspect condition of finish and panel lettering.

NOTE
Touchup painting is recommended in lieu of refinishing whenever practicable. Screwheads. binding posts, receptacles, and plated fastener parts will not be painted or polished with abrasives.

Inspect the pendant cable assemblies for cuts, breaks, damaged insulation, or broken connectors.

Performancestandand
a. Screws, nuts, and bolts must be tight and none missing.
b. No evidence of damage.
c. Operating fuses must not be damaged and he of proper rating. Each SPARE fuse holder must contain a fuse of proper rating.
d. Wiring must be free of cuts. breaks, and damaged insulation
f. Interior of chassis must be clean with no signs of dirt or fungus.
g. External surfaces must be in good condition and panel lettering must be legible.

Pendant cable assemblies must be free of cuts, breaks, damaged insulation, or broken connectors.

3-27. Camera Test Adapter DS Electrical Test
a Tools, Test Equipment, and Materials.
(1) Multimeter TS-352B/U.
(2) Voltmeter, Electronic ME-202A/U.
(3) Tool Kit, Photographic Repair TK-77/GF.
(4) Tool Kit, Photographic Repair TK-109/GF.
b. Test Conditions and Connections. Connect power cable W9 to a 28 -volt de power source and to connector

J1 or the camera test adapter.
c. Procedure. Perform the bench test as described in paragraph 3-9a.

Section I. GENERAL

4-1. Scope of General Support Mainte-
 n_a_n ce

This chapter contains the following general support maintenance functions for the camera analyzer and camera test adapter: bench testing, troubleshooting, voltage and resistance measurements, disassembly, reassembly, and general support testing procedures. The general support maintenance procedures supplement the direct support maintenance instructions and the maintenance procedures contained in TM 11-6760-239-12.

4-2. Organization of General Support (GS) Maintenance

The maintenance duties of the general support repairman for the camera analyzer and camera test adapter are contained in a and b below together with references to the paragraphs covering the specific maintenance function.
a Camera Analyzer GS Troubleshooting Procedures. The GS troubleshooting procedures for the camera analyzer are listed below:
(1) Lamp teat circuit.
(a) Bench test (para 4-8a).
(b) Troubleshooting procedures (para 4-8b).
(2) Internal test 1 circuit.
(a) Bench test (para 4-9a).
(b) Troubleshooting procedures (para 4-9b).
(c) Voltage and resistance measurements (para 4-9c).
(3) Internal test 2 circuit.
(a) Bench test (para 4-10a).
(b) Troubleshooting procedures (para 4-10b).
(c) Voltage and resistance measurements (para 4-10c).
(4) Control-power supply section.
(a) Bench test (para 4-11b).
(b) Troubleshooting procedures (para 4-11c).
(c) Voltage and resistance measurements (para 4-11d).
(5) Lens cone section.
(a) Bench test (para 4-12b).
(b) Troubleshooting procedures (para 4-12c).
(c) Voltage and resistance measurements (4-12d).
(6) Camera body section.
(a) Bench test (para 4-13b).
(b) Troubleshooting procedures (para 4-13c).
(c) Voltage and resistance measurements (para 4-13d.
b. Camera Analyzer GS Replacement Procedures. The camera analyzer replacement procedures are contained in paragraph 4-18.
c. Camera Test Adapter GS Troubleshooting Procedures. The camera test adapter GS troubleshooting procedures are contained in paragraph 4-14.
d. Camera Test Adapter GS Replacement Procedures. The camera test adapter replacement procedures are contained in paragraph 4-24.

Section II. TOOLS AND EQUIPMENT (GS)

4-3. Tools and Test Equipment Required for General Support Maintenance
Refer to the maintenance allocation chart (TM 11-6760-239-12) for a listing of tools and test equipment required to perform the maintenance functions outlined in paragraph 4-2.
4-4. Materials Required for General Support Maintenance
The materials required for general support maintenance are listed in table 4-1.

Table 4-1 Materials Required for General Support Maintenance
Item Quantity National stock number

Trichloroethane
Solder
Lint-free cloth
As required 8305-00-170-5062
${ }^{916}$ (Feder Spec. TT-X916)

Butyl alcohol
Araldite 571CX
As required
Diacetone alcohol (Federal As required
spec. $0-0-306)$
Fungus removal solution As required 6650-00-133-0695 (mixture of Isopropyl

Table 4-1. Materials Required For General Support Maintenance - Continued

Item	Qumaty	Notunaistock numbers	Item	Quentuy	National stock number
alcohol 65\% and Freon 35\%			Acetone (Federal Spec. 0-A-51) Variable voltage	As required	
Sandpaper	As required	5350-00-235-0124	test fixture fabrication:		
Liquid staking compound GE1201F	As required		(Used for control-power supply bench test (para		
Glyptai thinner 1500	As required		4-1))		
Wiring No. 16 AWG	As required	6145-00-846-9818	Fuse FHN 26W	1	6920-00-952-9029
No. 18 AWG	As required	6145-00-805-1720	Connector, Type 3017,		
No. 22 AWG	As required	6145-00-954-5121	Federal supply code 83330	3	
Sealing compound, Loctite	As required	8030-00-680-0889	Resistor RV6NA YSD102A	1	5905-00-577-1761
Grade A (red)			Resistor RNR63C6R80F	1	
Lacquer, acrylic, resin type,	As required	8010-00-835-1424	Switch MS-24655-221	1	5930-00-892-9550
(purple)			Repair Kit, Printed Wiring		
Epoxy adhesive, MIL-A -	As required		Board MK-772/U	1	5999-00-757-7042

Section III. GS TROUBLESHOOTING

W ARNING

Be careful when troubleshooting the equipment. Dangerous voltages exist in the equip ment.

4-5. GS Troubleshooting Information

GS troubleshooting procedures include all troubleshooting actions performed at lower levels of maintenance in addition to the information contained in this chapter. Refer to TM 11-6760-239-12 for troubleshooting information on the more commonly encountered troubles Unless the trouble has been specifically localized or isolated, perform the applicable troubleshooting procedures given in TM 11-6760-239-12. The symptoms and troubles listed in the GS troubleshooting tables are presumed to exist after all lower level troubleshooting procedures and corrective measures have been performed. The major unit troubleshooting and module troubleshooting data provide general support maintenance personnel with the information required to recheck, crosscheck, and correlate all information from the lower levels of maintenance with the test equipment and tools available at the general support maintenance level. Perform the procedures in the troubleshooting tables in the order given. Do not proceed to the next action when the corrective measures already taken eliminate the trouble Use the applicable schematic and wiring diagrams as an aid when troubleshooting. Figure FO-20 provides the color code markings for military standard resistors, inductors, and capacitors.

4-6. signal Substitution

Signal substitution procedures quickly enable the general support repairman to localize a fault. A variable voltage test fixture (fig. 4-1) is used for the control-power supply, lens cune section, and camera body section bench tests. Instructions for fabrication of the variable voltage test fixture are given in
paragraph 4-11a. An oscilloscope, RC bridge, or voltmeter may also be used in performing signal sub stitution procedures. Signal substitution and signal tracing techniques are given below.
a. Test jumper cables can be used to apply either +28 volts dc power or ground to particular points throughout the equipment.
b. Voltmeter, Electronic ME-202A/U (vtvm) is used to measure voltages. Multimeter TS-352B/U (multimeter) is used to measure resistance.

NOTE

When connecting the test jumper cables, it may be necessary to partially remove the fungicide coating to ensure proper electrical contact. Use acetone (Federal Specification O-A-51) to remove the fungicide from electrical contact points.
c. After trouble is traced to a particular circuit, disconnect the test equipment and perform voltage and resistance measurements to localize the defective parts.

4-7. Isolating Trouble Within a Stage

a. When trouble has been localized to a stage, either through performance of the bench tests, or other means, isolate the defective part by measuring voltages at the transistor terminals and other points related to the stage suspected being faulty.

CAUTION

Do not take resistance measurements on the transistors. The multimeter battery can damage the transistors by causing excessive current through them.
b. Transistor terminal voltage measurements are made with the vtvm. Measurements that differ widely from those in the voltage tables can, when used with the appropriate schematic diagram, often localize the trouble to a specific part.

NOTE
Voltages measured at the emitter and base terminala of replaced transistors may vary as much as 15 to 20 percent from the voltage listed in the voltage tables. Collector voltages, however, should not vary by more than 10 percent. Bias voltage should remain approximately the same as those listed in the voltage tables.

NOTE

All troubleshooting procedures on the camera analyzer are performed with the test panel removed from the combination case (para 3-13a), and power cable W9 connected to POWER connector Jl.

4-8. Lamp Test Circuit Troubleshooting

 a. Bench Test.(1) Set all controls and switches to their off, neutral, or counterclockwise positions.
(2) Connect power cable W9 to primary power source and to POWER connector J
(3) Perform the lamp test circuit bench test given in table 4-2.

Table 4-2. Lamp Test Circuit Bench Test

Proodure
Sup (Pet POWER switch (PAN-
EL POWER section) to
ON

2 Hold LAMP TEST switch
(MASTER section) at ON
until all front panel indi-
cators are carefully ob-
served; then release to
OFF.

Resuluindication
a. AC PWR and DC PWR indicators light.
b. AC and DC fuse indica. tors do not light.
All remaining front panel indicators light while switch is in ON position.
b. Lump Test Circuit Troubleshooting Procedures. Steps referenced in the Trouble symptom column table $4-3$, refer to the numbered steps in the bench test (a above). Electronic parts referenced in the trouble shooting table are shown in the schematic diagram (fig. FO-12) and wiring diagram (fig.FO-13)

NOTE

In the following troubleshooting table, the maintenance repairman should check first for defective indicator lamp before replacing part as indicated in the table.

Table 4-3. Lamp Test Circuit Troubleshooting

Table 4-3. Lamp Tent Circuit Troubleshooting - Continued

fom	Truable symptom	Praiable trouble	Correction
-	INTERVAL PULSE indicators DS1 and DS2 does not light (step2).	Defective diode CR105.	Replace diode CR105 (para 4-19).
18	MODULE INTVVL indicator DS3 does not light (step2).	Defectivediode CRII4.	Replace diode CR114 (para 4-19).
19	MODULE FLLM DRIVE indicator DS4 does not light(step 2).	Defective diode CR113.	Replace diode CR1i3 (para 4-19).
20	MOUNT AC indicator DS1 does not light(step 2).	Defective diode CR118.	Replace diode CR118 (para 4--19).
21	AC A A indicator DS2 dees not light(step 2).	Defective diode CR119.	Replace diode CR119 (para 4-19).
22	CAMR 28V indicator DS3 does not light (step 2).	Defective diode CR121.	Replace diode CR121 (para 4 -19).
23	AC 1 B indicator DS4 does not light (step 2).	Defective diode CR120.	Replace diode CR120 (para 4-19).
24	INTVL PULSE indicator DS1 does not light (step 2).	Defective diode CR108.	Replace diode CR108 (para 4319).
25	VERT POS indicator DS3 does not light (step 2).	Jefective diode CR100.	Replace diode CR100 (para 4-19).
26	RELAY OPR indicator DS4 does not light (step4).	Defective diode CR101.	Replace diode CR101 (para 4-19).
27	MAN PIC indicator DS2 does not light (step 2).	Defective diode CR99.	Replace diode CR99 (para 4-19).
28	SYS RDY indicator DS1 does not light (step 2).	Defective diode CR95 or CR94.	Replace diode CR95 or CR94 (para 4-19).
29	NIGHT EXP indicator DS3 does not light (step 2).	Defective diode CR97.	Replace diode CR97 (para 4-19).
30	FLASH AC indicator DS2 does not light (step 2).	Defective diode CR96.	Replace diode CR96 (para 4-19).
31	FLASH DC indicator DS4 does not light (step 2).	Defective diodeCR98.	Replace diode CR98 (para 4-19).
32	NIGHT indicator DS4 does not light (step 2).	Defective diode CR22 or resistor $R 5$.	Replace diode CR22 or resistor R5 (para 4-19).
33	AUTO TRIP indicator DS2 does not light (step 2).	Defective diode CR20.	Replace diode CR20 (para 4-19).
34	FILM FAIL indicator DS1 does not light (step 2).	Defective diodeCR18.	Replace diode CR18(para 4-19).
35	NIGHT INTLK indicator DS3 does not light (step2).	Defective diode CR21.	Replace diode CR21 (para 4-19).
36	EXP RESET indicator DS1 does not light (step 2).	Defective diode CR13.	Replace diode CR13 (para 4-19).
37	BODY RDY indicator DS3 does not light(step 2).	Defective diode CR16.	Replace diode CR16 (para 4-19).
38	BODY OPR indicator DS4 does not light (step 2).	Defective diode CR17.	Replace diodeCR17 (para 4-19).
39	SIM OPR indicator DS2 does not light (step 2).	Defective diode CR15.	Replace diode CRI5 (para 4-19).
40	CYCLE PULSE indicator DS1 and DS2 do not light(ster 2).	Defective diode CR8.	Replace diode CR8 (para 4-19).
41	RECYCLE I Ji A ATE indicators DS3 and DS4 do not light (step 2).	Defective diode CR10.	Replace diodeCR10 (para 4-19).
42	SCOPE indicator DS1 does not light(step 2).	Defective diode CR3.	Replace diode CR3 (para 4-19).
43	VOM DC indicator DS2 does not light (ste, 2).	Defective diode CR4.	Replace diode CR4 (para 4-19).
44	WIDTH INDICATOR DS3 does not lig'... (step 2).	Defective diode CR6.	Replace diode CR6 (para 4-19).
45	INTVL indicator DS4 does not light (step2).	Defective diode CR5.	Replace diode CR5 (para 4-19).
46	R/C BRIDGE indicators DS1 and DS2 do not light(step2).	Defective diode CR2.	Replace diode CR2 (para 4-19).
47	DC VOLTS indicators DS3 and USA do not light(step2).	Defective diode CR1.	Replace diode CR1 (para 4. ${ }^{\mathbf{1}} \mathbf{1 9}$).

4-9. Internal Test Circuit Troubleshooting

Internal test 1 circuit troubleshooting consists of a bench test (a below), troubleshooting table (b below), and voltage and resistance measurements (c below). The bench test is performed using the test setup of
paragraph 3-7a (steps 1 through 8). When an abnormal result is obtained during performance of the bench test, refer to the troubleshooting table.
a. Bench Test. Perform the internal test 1 bench test given in table 4-4 below.

Table 4-4. Internal Test, Circuit Bench Test

Step	Procedure	
1	Set POWER switch (PANEL POWER section) to ON.	COUNTER INTVL indicator lights.
2	Set MASTER switch (MASTER section) to INTERNAL TEST	a. VOM DC indicator lights.
	1.	bC VOLTS indicator lights.
		c. Multimeter indicates -25 ± 5 volts dc
		d. Vtvm indicates -3.34 volts ± 50 millivolts dc.

b. Internal Test 1 Circuit Troubleshooting Procedures. Step referenced in the Trouble symptom column in table $4-5$, refer to the numbered steps in the
bench test (a above). Electronic parts referenced in the troubleshooting table are shown in the schematic diagram (fig. FO-12) and wiring diagram (fig. FO-13).

Table 4-5. Internal Test I Circuit Troubleshooting

Item
COUNTER INTVL indicator does not light step 1).
2 VOM DC indicator does not light (step 2).
3 DC VOLTS indicator does not light (step 2).
4 No voltage or low voltage indication on multimeter (step 2).

5 No voltage or out of tolerance indication on vtvm (step 2).

6 CYCLE PULSE indicator does not flash (step 3).

7 RECYCLE INITIATE indicator does not flash (step 3).

8

Digital timer indication outside of tolerance specified (step 3).

Probable troublc

Defective MASTER switch

Defective MASTER switch
Defective MASTER switch
a. Defective component in -28 volts de power supply.
b. Defective MASTER switch
a Defective component in photo cell output simulator circuit.
b. Photocell output simulator circuit out of adjustment.
c. Defective MASTER switch
d. Defective resistor R13.
a Defective MASTER switch
b. Defective diode CR7.
a Defective unijunction transistor Q1 or associated circuit component.
b. Defective relay K1 or K2.
c Defective diode CR9 or CR12.
a Defective timing circuit component (transistor Ql, resistors R2 through R4, capacitor C2).
b. Incorrect adjustment.
c. Defective resistor R12.
d. Defective diode CR9.

Correction

Check continuity through MASTER switch replace if defective (para 4-18b).
Same as step 1 above.
Same as step 1 above.
a Check voltage and resistsance to isolate and replace detective component (para 4-9c).
b. Check continuity through MASTER switch; replace if defective (para 4-18b).
a Check voltage and resistance to isolate and replace defective component (para 4-9c).
b. Check adjustment and correct as required (para 3-15b).
c. Check continuity through MASTER switch replace if defective (para 4-18b).
d. Replace resistor R13 (para 4-21).
a. Check continuity through MASTER switch. replace if defective (para 4-18b).
b. Replace diode CR7.
a Check and replace defective component (para 4-21).
b. Check relays and replace if de fective (para 4-19).
c. Replace diode CR9 or CR12 (para -19).
a Check and replace defective component (para 4-19).
b. Check adjustment and correct if required (para 3-15d).
c. Replace resistor R12 (para 4-21).
d. Replace diode CR9 (para 4-21).
c. Internal Test 1 Circuit Voltage and Resistance Measurements. Use the schematic diagram (fig. FO12). winag diagram (fig. FO-13), and parts location diagrams (fig. 4-2 through 4-4, FO-17, and FO-19) as an aid when raking voltage and resistance measurements.
(1) Voltage measurements. Measure voltages bo tween the designated pounts and chassis ground in table $4-6$. Be sure to observe polarity. Adjust the vtvm for proper range as required when making the voltage measurements.

Table 4-6. Internal Test 1 Circuit Voltage Measurement

PinPount	Voltage to ground	Conditiono
XA16B, pin 12	Zero	
A2, pin G	+28 vdc	
XA16B, pin 13	Zero	
XA16B, pin V	Zero	
Junction of CR34	-28 vdc	
CR 35		
Emitter of Q2	-3.34 vdc	
Junction of K22 and R23	-5.1 vdc	
J3, pin N	+28 vde	Set MASTER switch
		to CATFERA BODY;
		MODE switch to
		AUTO, PULSE or
		PULSE IMC; and
		CYCLE PULSE
		switch to MANUAL
J3, Pin J	+28 vdc	Set MASTER switch
		to CAMERA BODY;
		MODE switch to
		AUTO, PULSE or
		PULSE IMC; and
		CYCLE PULSE
		gwitch to MANUAL.
J3, $\operatorname{pin} \mathrm{W}$	+28 vdc	Set MASTER switch
		to CAMERA BODY.

(2) Resistance measurements. Measure resistance between points given in table 4-7. Make measurements with power cable W9 disconnected from POWER connector J1.

Table 4-7. InternaI Test 1 Circuit Resistance Measurements Pin/point Resistance (ohms)

XA16B, pin 12 to ground	zero
XA16B, pin 13 to ground	Zero
XA16B, pin V to ground	zero
XA16B, pin 3 to J14	390
J19 to ground	zero
J 3 , pin N to J 3 , pin J	Zero

> 4-10. Internal Test 2 Circuit Troubleshooting
a. Bench Test. Perform the internal test 2 circuit bench test given in table 4-8.

NOTE
The bench teat is performed with the vtvm connected to DC volts input and GRD terminals.

Table 4-8. Internal Test 2 Circuit Bench Test

```
                            Procedure Reullvindication
1 Set POWER switch (PAN- DC VOLTS indicator lights.
        EL POWER section) to
        ON.
2 Set MASTER switch Vtvm indication tracks (MASTER section) to setting of E V/H control. INTERNALTEST2
```

b. Internal Test 2 Circuit Troubleshooting Procedures. Steps referenced in the Trouble symptom column in table 4-9, refer to the numbered steps in the bench test (a above). Electronic parts referenced in the troubleshooting table are shown in the schematic diagram (fig. FO-12), and wiring diagram (fig. FO-13).

Table 4-9. Internal Test 2 Circuit Troubleshooting

Item Trouble symptom
 Probable trouble

1 DC VOLTS indicator does not light (step 1).

Defective MASTER switch
Vtum does not track E V/H control setting
(step 2).
a. Defective MASTER switch
b. Defective operational amplifier A2.
c. Defective component in operational amplifier power supply (part of A16).
d. Defective component in +50 vdc regulator circuit.
e. +50 volts regulator circuit out of adjustment.
f. Defective resistor R13.

Correction

Check continuity through MA!\% TER switch; replace if defective (para 4-18b).
a. Same as step 1 above.
b. Check and replace if defective (para 4-19).
c. Check and replace defective component (para 4-1 ${ }^{\wedge}$).
d. Check and replace defective component (para 4-19).
e. Perform adjusiment procedure (para 3-15a).
f. Replace resistor R13 (para 4-19).
(1) Voltage measurements. Measure voltages between the designated points/and chassis ground in table 4-10 unless otherwise specified. Adjust the vtvm for proper range as required when making the voltage measurements
c. Internal Test 2 Circuit Voltage and Resistance Measurements. Use the schematic diagram (fig. FO-12), wiring diagram (fig. FO-13), and parts location diagrams (fige 4-2 through 4-4, $70-17$ and FO-19) as an aid when making voltage and resistance measurements.

Table 4-10. Internal Test 2 Circuit Voltage Measurements Pinpoint Voltage Conditions

XA16B. pin V zero
J9, pin DD -25 vdc
A2, pin 2 - 25 vdc
Between TP2(-) and +13 vdc
TP1 (+)
Between TP3(-) and - 13 vdc TP2(+)
$\begin{array}{ll}\text { TP5 } & +50 \mathrm{vdc} \\ \text { TP4 } & +8.2 \mathrm{vdc}\end{array}$

E V/H control set to 25 EV / H control set to 25
(2) Resistance measurements. Measurements resistance between points given in table 4-11. Make measurements with power cable W9 discomected from POWER connector J1.

Table 4-11. Internal Test 2 Circuit Resistance Measurements

Pin/point

Resistance (ohms)
XA26B, pin V to
Zero
ground
J18 to J9, $\quad 1 \mathrm{~K}$ pin DD
4-11. Control-Power Supply Section Troubleshooting

a. Preliminary Procedures.

(1) Fabricate the variable voltage test fixture in accordance with figure 4-1.
(2) Connect one end of a 2-foot long wire (black) to the chassis of the test panel. Install a small alligator clip to the other end of the wire. This connection will serve as the test ground.
(3) Set MASTER switch to CONTROL PWR SUPPLY.
(4) Set POWER switch to ON.
b. Bench Test. Perform the control-power supply section bench test given tàble 4-12.

WARNING

Be careful when applying voltages or grounds to pins of connectors. Make connections with power off. Always disconnect the test voltage after observations are completed and before proceeding to the next step.

NOTE

All switches remain in positions given unless instructed. otherwise. When making continuity or resistance measurements, always disconnect power cable W9 from POWER connector J1. An asterisk (*) next to the step number serves as a reminder to disconnect power cable W9 from primary power source.

Figure 4-1. Variable voltage test fixture, fabrication details.
Table 4-12. Control-Power Supply Section Bench Test

Set MODULE TEST switch (CONTROLPOWER SUPPLY section) to INTVL R9 BAL.
2 Apply +28 vdc output of variable voltage test fixture to J 11 , pin k momentarily.
3* Measure continuity between DC VOLTS GRD connector and ground, using multimeter.
4 Connect test drive generator (fig. 3-1) to MODULES connector J11, and set power switch on test drive generator to on.
5 Measure voltage on J11, pin y, using vtvm.
6 Momentarily depress OPERATE OFF switch.
7* Disconnect test drive generator from J11, and measure reaistance between J11, pin w and DC VOLTS INPUT connector, using multimeter.

Resultindication

MAN PIC indicator lights.
INTVL and DC VOLTS indicators light.
Muitimeter indicates zero resistance.
Lamps DS1 thru DS4 or: chassis and components assembiy light.

Vtrin indicates approximately -50 volts dc.
V/tum on J11, pin y indicater: zero vdc.
Multimeter indicates 1 K ohin resistance.

Table 4-12. Control Power Supply Section Bench Test - Continued Procedure

Resultindicication
Measure continuity between J 11 , pin q and ground usingultimeter indicates zero resistance. multimeter.
Insert one end of 10 K ohm, $1 / 4$ watt resistor onto center tap dftvm indication decreases from 39 volts de to 33 volts dc.
E V/H control; set control dial to 39 ; then connect other end of resistor and multimeter to J 11 , pin u momentarily and observe, vtvm indication
Measure continuity between J11, pin v and J11, pin t , usingultimeter measure zero resistance. multimeter.
Disconnect test setup of step 9. and measure continuitMultimeter indicates zero resistance. between J11, pair and ground, using multimeter.
Set MODULE TEST switch to INTVL R7 BAL, and apply +28 INTVL and DC VOLTS indicators light. vdc output of variable voltage teat fixture to J11. pin k momentarily.
Measure continuity between DC VOLTS GRD terminal anMultimeter indicates zero resistance. ground using multimeter.
Measure resistance between DC VOLTS INPUT terminal andlultimeter indicates 1 K ohm resistance. J11, pin w. using multimeter.
Measure continuity between J11, pin vand J11, pin t , using multimeter.
Insert one end of 10 K ohm, $1 / 4$ watt resistor onto center tap of E V/H control; set control dial to 39 ; then connect other end of resistor and vtvm to J11, pin u momentarily and observe vtvm indication
Set MODULE TEST switch to INTVL OPR and disconnect test setup of step 9 , then apply +28 vdc output of variable voltage test fixture to J11, pink momentarily.
Measure continuity between SCOPE GRD terminal and ground using multimeter.
Measure resistance between SCORE VERT terminal and J11, pin m , using multimeter.
Apply +28 vdc output of variable voltage test fixture to J11, $\mathrm{pm} n$ momentarily.
Apply +28 vdc output of variable voltage text fixture to J11, pm m momentarily.
Measure voltage on J11, pin r, using vtvm
Set MODULE TEST switch to INTVL + 40VDC, and apply +28 vdc output of variable voltage test fixture to J11, pin k.

Measure continuity between DC VOLTS GRD terminal and ground using multimeter.
Measure continuity between SCOPE GRD terminal and ground using multmeter.
Measure resistance between DC VOLTS INPUT terminal and $\mathrm{J} 11, \mathrm{pm} \mathrm{u}$, using multimeter.
Measure resistance between SCOPE VERT terminal and J11, pin u, using multimeter.
Measure voltage on J11, pin r , using vtvm.
Set MODULE TEST switch to INTVL - 40 VDC, and apply +28 vdc output of variable voltage text fixture to J11, pin k.

Measure continuity between DC VOLTS GRD terminal and ground using multimeter.
Measure continuity between SCOPE GRD terminal and ground using multimeter.
Measure resistance between J11, pin t and DC VOLTS INPUT terminal using multimeter.
Measure resistance between J11, pin t and SCOPE VERT terminal using multimeter.
Measure voltage on J11, pin r, using vtvm.
Set MODULE TEST switch to INTVL TP3, and apply +28 vdc outputof variable voltage text fixture to J11, pink.
Measure continuity between DC VOLTS GRD terminal and ground, using multimeter.
Measure continuity between SCOPE GRD terminal and ground using multimeter.

Multimeter indicates zero resistance.
Vtvm indication decreases from 39 volts de to 33 volts dc.

COUNTER INTVL, MODULE INTVL, COUNTER WIDTH and SCOPE indicators light

Multimeter indicates zero resistance.
Multimeter indicates 1 K ohm resistance.
INTVL PULSE indicate lights.
INTERVAL PULSE indicator lights.
Vtvm indicates setting of E V/H control
INTVL, DC VOLTS and SCOPE indicators light.

Multimeter indicates zero resistance.
Multimeter indicates zero resistance.
Multimeter indicates 1 K ohm resistance.
Multimeter indicates 1 K ohm resistance.
V tvm indicates setting of E V/H control
INTVL, DC VOLTS and SCOPE indicators light

Multimeter indicatea zero resistance.
Multimeter indicates zero resistance.
Multimeter indicates 1 K ohm resistance
Multimeter indicatea 1 K ohm resistance.
V tvm indicatea setting of $\mathrm{E} \mathrm{V} / \mathrm{H}$ control INTVL, DC VOLTS and SCOPE indicators light

Multimeter indicates zero resistance.
Multimeter indicates zero resistance.

Table 4-12. Control-Power Supply Section Bench Test - Continued

Table 4-12. Control-PowerSupply Section Bench Test - Continued
Procedure Resultindication

	ProcedureMeasure resistance between J 9 , pin $\mathrm{H}(+)$ and ground (- Multimeter indicates approximately 160 ohms resistance. using multimeter set on RX1 scale.	
73*		
74*	Measure resistance between J9, pin F $(+)$ and J9. pin $\mathrm{J}(-)$,Multimeter indicates approximately 160 ohms resistance using multimeter set on RX1 scale.	
75	Measure voltage on J , pin L , using vtvm	Vtvm indicates +28 vdc.
76	Connect J9. pin L to J10, pin Y and connect test ground to JS,YS RDY indicators lights.pin M.	
77*	Set TEST switch to SYSTEM MAN PIC, then measureMultimeter indicates zero resistance. continuity between J 9 . pin J and ground, using multimeter.	
78*	Measure resistance between J9, pin H (+) and J9. pin J (-),Multimeter indicates approximately 160 ohms. using multimeter set on RX 1 scale.	
79	Measure voltage on J9, pin L using vtvm.	V tvm indicates +28 vdc .
80*	Set TEST switch to SYSTEM NIGHT FLASH, then measureMultimeter indicates approximately 15 ohms resistance. resistance between J 9 , pin e (+) and ground (-) using multimeter set on RX1 range.	
81	Measure voltage on J9. pin L, using vtvm.	Vtvm indicates +28 vdc .
82*	Measure resistance between J9, pin $\mathrm{H}(+)$ and ground (-), Multimeter indicates approximately 160 ohms resistance. using multimeter set on RX1 scale.	
83*	Set TEST switch to SYSTEM FLASH RDY, then measureMultimeter indicates approximately 15 ohms resistance. resistance between J9, pin e (+) and ground (-), using multimeter set on RX1 range.	
84	Measure voltage on J 9 , pin X , using v tvm.	V tvm indicates +28 vdc .
85	Measure voltage on J9. pin L. using vtvm	V tvm indicate +28 vdc ,
86	Set TEST switch to AUX BD INTVL	R/C BRDG indicator lights.
87*	Measure continuity between J11, pin b and R/C BR terminal using multimeter.	+Multimeter indicates zero resistance.
88	Set TEST switch to AUX BD FDA.	R/C BRDG indicator lights.
89*	Measure continuity between J11, pin A VC BRDG + terminal using multimeter.	Multimeter measures zero resistance.
90*	Set TEST switch to SYSTEM OPERATE; set CONFIGURATION switch to 44MM VERT, then measure resistance between J9, pin A (a) and ground (-), using multmeter on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
91*	Set CONFIGURATION switch to $3 \mathrm{IN} .15^{\circ} \mathrm{R}$. then measure resistance between $\mathrm{J} 9, \operatorname{pin} \mathrm{z}(+)$ and ground (-) using multimeter on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
92*	Measure resistance between J 9 , pin $\mathrm{h}(+)$ and $\mathrm{J} 9 \mathrm{pin} \mathrm{z}(-)$ using multimeter set on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
93	Measure voltage on J10, pin X, using vtvm.	Vtvm indicates +28 vdc .
94	Measure voltage on J9. pin HH, using vtvm.	V tvm indicates +28 vdc .
95	Measure voltage on; J10, pin S, using vtvm.	V tvm indicates +28 vdc .
96	Connect test ground on J10. pin X, J9, pin HH and J10, pin S, simultaneously.	RELAY OPR indicator lights.
97	Simultaneously connect test ground on J11, pin d and pin P , and apply the +28 vdc output of variable voltage test fixture to J11, pin D.	VERT POS indicator lights.
98*	Set CONFIGURATION switch to $3 \mathrm{IN} .30^{\circ} \mathrm{R}$, then measure resistance between J9, pin $\mathrm{K}(+)$ and ground (-) using multimeter on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
99*	Measure resistance between $\mathrm{J} 9, \operatorname{pinh}(+)$ and $\mathrm{J} 9, \operatorname{pin} \mathrm{k}(-)$ using multimeter set on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
100	Connect test ground on J 11 , pin $\mathrm{C}, \mathrm{J} 11$, pin X and J 11 , pin c , simultaneously.	RELAY OPR indicator lights.
101*	Set CONFIGURATION switch to 3 IN. VERT, then measure resistance between J 9 , pin $\mathrm{h}(+)$ and ground (-) using multimeter on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
102*	Set CONFIGURATION switch to $6 \mathrm{IN} .15^{\circ} \mathrm{L}$, then measure resistance between J 9 , pin $\mathrm{y}(+)$ and ground (-) using multimeter on RX1 scale.	Multimeter indicates approximately 15 ohms resistance.
103	Connect test ground on J11, pin S, J11, pin Z and J10, pin S, simultaneously.	RELAY OPR indicator lights.
104*	Set CONFIGURATION switch to $6 \mathrm{IN} .30^{\circ} \mathrm{L}$, then measure	Multimeter indicates approximately 15 ohms resistance.

RELAY OPR indicator lights.

Table 4-12Control-Power Supply Section Bench Test - Continued
Step Procedure Resultindicator

106* Set CONFIGURATION switch to 6 IN. VERT. then measureMultimeter indicates zero resistance. resistance between R/C BRDG - connector J17 and ground using multimeter on RX1 range.
107* Measure resistance between R/C BRDG + connector J16 andMultimeter indicates zero resistance J11- b using multimeter.
103* Set CONFIGURATION switch to $12 \mathrm{IN} .15^{\circ}$ L, then measureMultimeter indicates approximately 160 ohms resistance resistance between J 9 , pin y $(+)$ and ground (-) using multimeter on RX1 scale.
103* Measure resistance between J9, pin a (+) and ground (-) usingultimeter indicates approximately 160 ohms. multimeter set on RX1 scale.
Connect test ground on J11, pin S, J11, pin zand J11, pin DRELAY OPR indicator lights simultaneously.
Set CONFIGURATION switch to $12 \mathrm{IN} .30^{\circ} \mathrm{L}$, then measureMultimeter indicates approximately 160 ohms. resistance between J 9 , pin a (+) and ground (-) using multimeter on RX1 scale.
Connect test ground on J11, pins, J11, pin N and J11, pin RELAY OPR indicator lights. simultaneously.

Set CONFIGURATION switch to 12 IN. VERT, then measure resistance between J 9 , pin a $(+)$ and ground (-) using multimeter on RX1 scale.
c. Control-Power Supply Section Troubleshooting Procedures. Steps referenced in the Trouble symptom column table 4-13, refer to the numbered stepa in the bench test (b above). Electronic parts referenced in the

troubleshooting table are ahown in the schematic diagram (fige $1 \mathrm{O}-12$), and wiring diagrams (fig $\mathrm{FO}-13$ and FO-14).

Table 4-13. Control-Power Supply Section Troubleshooting

1 MAN PIC indicator does not light (step 1).
2 a INTVL and DC VOLTS indicators dc not light (step 2).
b. DC VOLTS indicator does not light (step

3 Multimeter indicatea open circuit (step 3)

4 Lamps DS1 through DS4 do not light (step 4).

5 No voltage or low voltage indication (step 5).

6
Vtvm does not indicate zero volts (step 6)
7 Multimeter indicates open circuit (step 7)

8 Multimeter indicatea open circuit (step 8).
9 No decrease in voltage observed (step 9).
10 Multimeter indicates open circuit (step 10)
11 Multimeter indicatea open circuit (step 11).
12 INTVL and DC VOLTS indicatora do not light (step 12).

Probable trouble
Defective resistor R50 or transistor Q15.
a. Defective transistor Q17, diodes CR116 and CR117. or resistor R52.
b. Defective diode CR112, MOD ULE TEST switch S1, MAS TER switch S1, or diode CR68.
Defective MODULE TEST switch S1, relay K3, or MASTER switch S1.
Open lamp circuit (DS1, DS2, DS3 or DS4), or defective lamp socket (XDS1, XDS2, XDS3, or XDS4).
Defective motor tachometer circuit component (transformer T2, diode CR2, resistors R5 and R6, capacitor C2, OPERATE OFF' switch S15).
Defective OPERATE OFF switch S15.
Defective MODULE TEST switch S1, relay K3, or MASTER switch S1.
Defective OPERATE OFF' switch S15.
Defective MODULE TEST switch S1 or Zener diode CR115.
Defective MODULE TEST switch Sl.
Defective MODULE TEST switch Sl.
Defective MODULE TEST switch Sl.

Correction
Replace defective component (para 4-19).
a Replace defective component (para 4-19).
b Replace defective component (para -19).

Replace defective component (para 4-19).

Repair wiring (fig. FO-13) or replace defective lamp socket (para 4-18c).
Replace defective component (para 4-21).

Replace switch S15 (para 3-13d)
Replace defective component (para 4-19 or 1-18b).
Replace switch S15 (para 3-13d).

Replace defective component (para 4-19).
Replace MODULE TEST switch S1 (para 4-19).
Same as step 10 above
Same as step 10 above.

Table 4-13.Control-Power Supply Section Troubleshooting-Continued

Trouble symptom

Probable trouble

Correction

Multimeter indicates open circuit (step 13). Defective MODULE TEST switch Replace defective component (para S1 or relay K3. 4-19).
Multimer indicates open circuit (step 14). Defective MODULE TEST switch Replace defective component (para S1 or relay K3. 4-19).
Multimeter indicates open circuit (step 15). Defective MODULE TEST switch Replace switch S1 (para 4-19). S1.
No decrease in voltage observed (step 16). Defective MODULE TEST switch Replace defective component (para S1 or Zener diode CR115. 4-19).
COUNTER INTVL, COUNTER WIDTH, Defective MODULE TEST switch Replace switch S1 (para 4-19). MODULE INTVL or SCOPE indicators do S1.
not light (step 17).
Multimeter indicates open circuit (step 18). Defective MODULE TEST switch Replace defective component (para S1 or relay K3. 4-19).
Multimeter indicates open circuit (step 19). Defective MODULE TEST switch Replace defective component (para S1, relay K3, MASTER switch 4-19). S1, or resistor R14.
INTVL PULSE indicator does not fight (stepDefective INTVL PULSE indicatorReplace defective component (para 20). DS1 circuit component. 3-13a).

INTERVAL PULSE indicator does not lightDefective INTERVAL PULSE indi- Replace defective component (pars (step 21). cator DS1 circuit. component 3-13a).
Vtvm does not indicate setting of E V/H COD Defective MODULE TEST switch Replace defective component (para trol (step 22). S1 or resistor R53. 4-19).
INTVL, DC VOLTS and SCOPE indicators do Defective MODULE TEST switch Replace switch S1 (para 4-19). not light (step 23). S 1 .
Multimeter indicates open circuit (step 24). Defective MODULE TEST switch Replace defective component (para S1 or relay K3. 4-19)
Multimeter indicates open circuit (step 25). Defective MODULE TEST switch Replace switch S1 (para 4-19). S 1 .
Multimeter indicates open circuit (step 26). Defective MODULE TEST switch Replace switch S1 (para 4-19).
Multimeter indicates open circuit (step 27).
Vtvm does not indicate setting of E V/H control (step 28).
INTVL DC VOLTS and SCOPE indicators do not light (step 29).
Multimeter indicates open circuit (step 30).
Multimeter indicates open circuit (Step 31).
Multimeter indicates open circuit (step 32).

Multimeter indicates open circuit (step 33).
Vtvm does not indicate setting of E V/H control (step 34).
INTVL DC VOLTS and SCOPE indicators do not light (step 35).
Multimeter indicates open circuit (step 36).
Multistep indicates open circuit (step 37).
Multimeter indicates open circuit (step38)
Multimeter indicates open circuit (step 39).
Vtvm does not indicate setting of E V/H control (step 40).
a. FILM DRIVE and DC VOLTS indicators do not light (step 41).
b. DC VOLTS indicator does not light.

S1.
Defective MODULE TEST switch S1 or relay K3.
Defective MODULE TEST switch S1 or resistor R53.
Defective MODULE TEST switch S1.
Defective MODULE TEST switch S1.
Defective MODULE TEST switch S1.
Defective MODULE TEST switch Sl.
a Defective transistor Q16. diodes CR109 and CR110, or resistor R51.
b. Defective diode CR111, MOD ULE TEST tch Sl , or MASTER switch S1.

Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace switch S1 (para 4-19).
Replace switch Sl (para 4-19).
Replace switch Sl (para 4-19).
Replace switch S1 (para 4-19).
a Replace defective component (para 4-19).
b. Replace defective component (para 4-19 or 4-186).

Table 4-13. Control-Power Supply Section Troubleshooting-Continued

Multimeter indicates open circuit (step 42).
Defective MODULE TEST switchReplace switch S1 (para 4-19). S1.
Multimeter indicates short or open Circuit Defective MASTER switch S1, re- Replace defective component (para (step 43). sister R42, MODULE TEST 4-18b or 4-19). switch S1, or relay K3.
Multimeter indicates short or open circuit Defective resistor R43, or R13, Replace defective component (para (Step 44). MODULE TEST switch S1, relay 4-18b or 4-19). K3, MASTER switch S1.
FILM DRIVE and DC VOLTS indicators do not Light (step 45). S1.
Multimeter indicates open circuit (step 46).
47 Multimeter indicates open or short circuit (step 47).

Defective MODULE TEST switch Replace switch S1 (para 4-19). S1.

Multimeter indicates open or short circuit defective MODULE TEST swit S1, relay K3 or resistor R42

4-19).
49 (step 48). dicators do not light (step 49). S1, relay K3, or resistor R43. 4 -19).

Vtvm does not indicate setting of E V/H (step Defective MODULE TEST swiRdplace defective component (para 50). S1. resistor R41 or capacitor 4-19). C15.
Defective MODULE TEST switch Replace defective component (para S1 or relay K3.

4-19).
Defective MODULE TEST switch Replace defective component (para S1 or relay K3. 4-19).
Defective MODULE TEST switch Replace defective component (para S1 or relay K3.
Defective MODULE TEST switch Replace defective component (para S1 or diodes CR72 and CR73. 4-19).
Defective MODULE TEST switclReplace defective component (para S1, resistor R41 or capacitor C15.
Defective MODULE TEST switch 4-19).

Replace defective component (para 4-19).
Defective MODULE TEST switc体eplace defective component (para S1 or relay K3.
Defective MODULE TEST switch S1 or relay K3.
Defective MODULE TEST switch S1 or relay K3.
Defective MODULE TEST switch S1 or diodes CR72 and CR73.
Defective MODULE TEST switch S1, resistor R41 or capacitor C15.
Defective MODULE TEST switch S1, or relay K3.
Defective MODULE TEST switch S1 or relay K3.
Defective MODULE TEST switch S1 or relay K3.
Defective MODULE TEST switch S1 or K3.
Deffective MODULE TEST switch S1.
Defective MODULE TEST switch S1, resistor R41, or capacitor C15.
Defective MODULE TEST switch S1 or relay K3.
Defective MODULE TEST switch S1 or relay K3.
Defective MOUNTAC indicator circuit wiring or assembly A13.

4-19).
Replace defective component (para 4-19).

Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace switch S1 (para 4-19).
Replace defective component (para 4-19).

Replace defective component (para 4-19).
Replace defective component (para 4-19).
Repair defective wiring (fig. FO-13) or replace assembly A13

Table 4-13. Control-Power Supply Section Troubleshooting-Continued

Table sympton
Probable trouble
Correction
(para 3-13a).
Multimeter indicates open circuit (step 71). Defective TRST switch S2.
Multimeter indicates open circuit (step 72). Defective TEST switch S2.
Multimeter indicates open or short circuit Defective diode CR79
(step 73).
Multimeter indicates open or short circuit Defective diode CR78 or CR81. (Step 74).
Vtvm indicates no voltage (step 75). Defective TEST switch S2. Replace switch S2 (para 4-19).
SYS RDY indicator does not light (step 76). Defective SYS RDY indicator cir-Repair defective wiring (fig. cuit wiring or assembly A11. FO-13) or replace assembly All
Multimeter indicatea open circuit (step 77). Defective TEST switch S2. Replace switch S2 (para 4-19).
Multimeter indicates open or short circuit Defective diode CR81 or diode CR7.Replace diode CR7 (para 4-19). (step 78).
Vtvm indicates no voltage (step 79). Defective TEST switch S2. Replace switch S2 (para 4-19).
Multimeter indicates open circuit (step 80). Defective TEST switch S2 or diode Replace defective component (para CR8.
Vtvm indicates no voltage (step 81). Defective TEST switch S2.
Multimeter indicates short or open circuit Defective diode CR80.
Defective TEST switch S2.
Multimeter indicates open circuit (step 83).
Vtvm indicates no voltage(step84).
Vtvm indicates no voltage (step 85).
Defective TEST switch S2.
Defective diode CR91.
R/C BRDG indicator does not light (step 86).
fective diode CR91. Replace diode (para 4-19).
Mut TER switch S1.
Multimeter indicates open circuit (step 87).
Defective TEST switch S2 or MAS- Replace defective switch (para 4-19 TER switch S1.
R/C BRDG indicator does not light (step 88).
Defective TEST switch S2 or Replace defective switch (para 4-19
Multimeter indicates open circuit (step 89). Defective TEST switch S2.
Multimeter indicatea open or short circuit $(\operatorname{step} 90)$.
Multimeter indicates open or short circuit (Step 91).
Multimeter indicates open or short circuit (Step 92).
Vtvm indicates zero voltage (step 93).
Vtvm indicates zero voltage (step 94).

Vtvm indicates zero voltage (step 95).
RELAY OPR indicator does not light (step 96).

VERT POS indicator does not light (step 97).
Multimeter indicates open or short circuit (step 98).
Multimeter indicates open or short circuit (Step 99)
RELAY OPR indicator does not light (step 169).

Multimeter indicates open or short circuit (step 101).
Multimeter indicates open or short circuit (Step 102).
RELAY OPR indicator does not light (step 1031.

Multimeter indicates open or short circuit (Step 104).
RELAY OPR indicator does not light (step 105).

Defective CONFIGURATION switch S 3 or diode CR82.
Defective CONFIGURATION switch S3 or diode CR82.
Defective diode CR84.
Defective CONFIGURATION switch S3 or resistor R46.
Defective CONFIGURATION switch S3. resistor R47. or capacitor Cl6.
Defective CONFIGURATION switch S3 or resistor R48.
Defective assembly Al or transistor Q14.
Defective assembly Al or transistor Q13.
Defective CONFIGURATION switch S3 or diode CR82.
Defective diode CR86.
Defective diode CR103. CONFIGURATION switch S3, assembly Al, or transistor Q14.
Defective CONFIGURATION switch S3 or diode CR82.
Defective CONFIGURATION switch S3.
Defective CONFIGURATION switch S3, assembly Al or transistor Q14.
Defective CONFIGURATION switch S3.
Defective CONFIGURATION switch S3. assembly A1, or transistor Q14.
(Para 3-13a).

Replace defective component (
4-19).
Replace switch S2 (para 4-19).
Replace diode CR80 (para 4-19).
Replace switch S2 (para 4-19).
Replace switch S2 (para 4-19).
Replace switch S2 (para 4-19).
Replace diode CR79 (para 4-19).
Replace defective component (para 4-19).

Replace switch S2 (para 4-19).

- Replace defective switch (para 4-19 or 4-18b).
or 4-18b).
or 4-18b).

Replace switch S2 (para 4-19).
Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace diode CR84 (para 4-19).
Replace defective component (para 4-19).
Replace defective component (para 4-19).

Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace defective component (para 4-19).
Replace defective component (par 4-19).
Replace diode CR86 (para 4-19).
Replace defective component (para 4-19).

Replace defective component (para 4-19).
Replace defective component (para 4-19).

Table 4-13. Control Power Supply Section Troubleshooting - Continued

Trouble symptom
Probable trouble
Correction
Multimeter indicates open circuit (step 166). Defective R/C BRDG - connector Replace defective conponent (para J17, MASTER switch S1, or 3-13g. 4-18b, or 4-19) CONFIGURATION switch S3.
Multimeter indicates open circuit (step 107). Defective R/C BRDG + connector Replace defective component (para J16, MASTER switch S1, or configuration switch S3.
Multimeter indicates open or short circuit Defective CONFIGURATION (step 108). switch S3 or diode CR87.
$3-13 \mathrm{~g}, 4-18 \mathrm{~b}$, or 4-19)
Replace defective component (para 4-19).
Multimeter indicates open or short circuit Defective diode CR89.
Replace diode CR89 (para -19).

(step 169)

RELAY OPR indicator does not light (step Defective CONFIGURATION
Replace defective component (para 110).
switch S3, assembly Al, or tran-4-19). sistor Q14.
Multimeter indicates open or short circuitDefective CONFIGURATION (step 111). switch S3 or diode CR88.

Replace defective component (para 4-19).
RELAY OPR indicator does not light (step Defective CONFIGURATION Replace defective component (para 112). switch S3, diode CR103, assem-4-19). bly Al, or transistor Q14.
Multimeter indicates open or short circuit Defective CONFIGURATION
Replace switch S3 (para 4-19). (step 113). switch S3.
d. Control-Power Supply Section Voltage and Resistance Measurements. Use the schematic diagram (fig. FO-12), wiring diagram (fig. FO-13), and parts location diagrams (fig. 4-2, 4-3, 4-4, FO-17, and FO-19) as an aid when making voltage and resistance measurements.
(1) Voftage measurements. The dc voltage in table $4-14$ is present at all times when power is applied to the test panel. The ac voltage is present only when MASTER switch is set to CONTROL PWR SUPPLY. All measurements are made from pins to ground

Table 1-14. Control-Power Supply Section Voltage Measurements. Connector

J9	dll	Vollage
Pun	$P_{\imath n}$	
E, D	s	115 vac
f	B, n	+28 vdc

(2) Resistance measurements. Tabble 4-15 lísts continuity measurements between the pins of connectors associated with the control-power supply section of the test panel Make measurements with power cable W9 disconnected from POWER connector J1.
Table 4-15. Control-Power Supply Section Resistance Measurements.

Continuity

Continuty			
From connectorpins		Tocunnectur pirs	
Jo	111	J9	J10
	s	E, D	
	E	8	
	G	A	
	e	2	
	W	k	
	F	h	
	Y	y	
	f	HH	
	X	AA	
	Z	GG	

Table 4-15. Control-Power Supply Section Resistance Meas-urements-Continued

a. Preliminary Procedures.

(1) Fabricate the variable voltage test fixture in accordance with figure 4-1.
(2) Connect one end of 2-foot long wire (black) to the chassis of the test panel. Install a small alligator clip to the other end of the wire. This connection will serve as the test ground.
(3) Set MASTER switch to LENS CONES.
(4) Set POWER switch to ON.
b. Bench Test. Perform the lens cones section bench test given in table 4-16.

WARNING

Be careful when applying voltages or grounds to pins of connectomake connections with
power off. Always disconnect the teasttage after observations are completed and before proceeding to the next step.

NOTE

All switches remain in positions given unless instructed otherwise. When making continuity of resistance measuremeats,ays disconnect power cable W9 from POWER connector J1. An asterisk (*) next to the step number serves as a reminder to disconnect power cable W9 from primary power source

Table 4-16. Lens Cones Section Bench Test

Step	Procedure	Reaultindication
i	Set TEST switch toS^ A.	R/C BRDG indicator lights.
$2 "$	Measure continuity between J8, pin C and R/C BRDG + terminal using multimeter.	Multimeter indicates zero resistance
3	'TEST switch tos/C B.	RKC BRDG indicator lights.
4"	easure continuity between J8, pin F and R/C BRDG terminal, using multimeter.	Multimeter indicates zero resistance.
-	Set TEST switch to CAL	DC VOLTS indicator lights.
6	Measure continuity between J6, pin J and DC VOLTS INPUT ter:ninal using multimeter.	Multimeter indicates zero resistonce.
7	Measure voltage on J6, pin W using vtivm	Vtvm indicates 35 ± 1 millivolts dc.
s	Set TEST switch to OPERATE.	DC VOLTS indicator lights.
9*	Me:sure continuity between J8, pin T and R/C BRDG + terminal using multimeter.	Multimeter indicates zero resistance.
10^{*}	Mequure continuity between J6, pin W and DC VOLTS INPUT terminsi, using multimeter.	Multimeter indicates zero resistance.
11	Comnect variable output voltage of $\mathbf{+ 2 8} \mathrm{vdc}$ momentarily to J8, pin U.	R/C BRDG indicator lights.
12	Set TEST ewitch to PHOTO SENSOR.	DC VOLTS indicator lights.
13°	Measure continuity bytween J6, pin Z and DC VOLTS INPUT terminal, using multimeter.	Multimeter indicates zero resistance.
14*	Bet FOOT-LAMBERTS control to 0; set RANGE switch to $0-10,000$; and neasure resistance between J 6 , pin Z, and $J 7$, pin C , using multimeter.	Multimeter indicates 4.99K ohms resistance.
15*	Sct RANGE switch to 0-100 and measure resistance between $J 6, \operatorname{pin} 2$, an $\cdot J 7$, pin C, using multimeter.	Multineter indicates 499K ohms resistance.
16°	Connect mul' eter between J6, pin M and ground, and set EXPOFX i E r vitch toOVER.	Multimeter indicates zero resistance.
.7*	Conect netitues between J6, pin L and ground, and set rxe	Multimeter indicates zero resistance.
18*	Conne: mwitaein tet at RX1 range) between J6, pin H(+) and grounce (-), and set DC EXPOSURE switch to INCREASE.	Multimeter indicates approximately 15 ohms reristance.
19*	Connect cultime :er (set at RX1 range) between J6, pin X (+) and greund --, and set DC EXIOSURE switch to DECREASE	Multimeter indicates approximately 15 ohms resistance.
20	Contect vtva, adjusted to measure $\mathbf{+ 2 8} \mathbf{~ v d c}$, between J8, pin J and ground, then set DC EXPOSURE switch to IN. CREASE.	Vtum indicates +28 vdc .
21	Connect vtvri, djusted to measure +28 vdc , between J 8 , pin N and grasel, then get. DC EXPOSURE switch to DECREASE.	Vtvm ind cates + 28vdc.
22	A pply the +28 volts de of variable voltage test fix ture to J 6 , pin T nomeri'arily.	INCR indicator lights.
23	Connect a test eround to sus, pin and apply the +28 volt dc output of variable voltage test fixture to $J 6$, pin S niomentarily	INCR LIM indicator lights.
24	Connect a test ground $2 . .56$, pin U, and connect the +28 volts dc output of variable voltage test fixture to J 6 , pin T , momentarily.	DECR indicator lights
25	Observe 6 IN indicator.	6 IN. indicator is lighted.
26	Connert a tess mround to $\sqrt{6} 6$, piw c, momentarily.	6 IN. indicator extinguishes and 12 IN. indicator lights.

Table 4-16. Lens Cones Section Bench Test - Continued

c. Lens Cones Section Troubleshooting Procedures. troubleshooting table are shown in the schematic diaSteps referenced in the trouble symptom column tabgeram fig. FO-12) and wiring diagrams (fig. FO-13 $4-17$ below, refer to the numbered steps in the bencland FO-14) test (b above). Electronic parts referenced in the

Table 4-17. Lens Cones Section Troubleshooting

Ite	Trouble symptom	Probable trouble	Corrections
1	RUC BRDG indicator does not light(step 1).	Defective TEST switch S10 or MASTER switch S1.	Replace defective switch (para 4-18b).
2	Multimeter indicates open circuit(step 2).	Defective TEST switch S10 or MASTER switch S 1 .	Replace defective switch (para 4-18b).
3	RUC BHDG indicator does not light(step 3).	Defective TEST switch S10 or MASTER switch S 1 .	Replace defective switch (para 4-18b).
4	Multimeter indicates open circuit (step 4).	Defective TEST switchS10.	Replace defective switch (para 4-18b).
5	DC VOLTS indicator does not light (step5).	Defective TEST switch S10 or MASTER switch Sl.	Replace defective switch (para 4-18b).
6	Multimeter indicates open circuit (step6).	Defective TEST switch S10, MASTER switch S1 or resistor R13.	Replace defective switch (para 4-18b) or resistor R13 (fig. FO-12).
7	a. Vtrm indication out of tolerance specified (step 7). b. Vtvm indicates no voltage(step 7).	a. Simulated exposure feedback circuit out of adjustment. b. Defective TEST switch S10.	a. Adjust simulated exposure feedback circuit (para 3-15c). b. Replace ipara 4-18b).
8	DC VOLTS indicator does not light (step8).	Defective TEST switch S10 or diode CR1.	Replace switch S10 (para 4-18b) or diode CR1 (para 4-19).
9	Multimeter indicates open circuit (step 9).	Defective TEST switch S10 or MASTER switch S1.	Replace defective switch (para 4-18b).
10	Multimeter indicates open circuit (step 10).	Defective TEST switch S10 or resistor R13.	Replace switch S10 (para 4-18b) or defective resistor R13 (para 4-19).
11	R/C BRDG indicator does not light(step 11).	Defective transistor Q1, resistor R1 or R2, or diode CR4.	Replace defective component.
12	DC VOLTS indicator does not light (step 12).	Defective TEST switch S10.	Replace switch S10 (para 4-18b).
13	Multimeter indicates open circuit (step 13).	Defective TEST switch S10.	Replace switch S10 (para 4-18b).
14	a. Multimeter indicates open circuit (step 14).	a. Defective RANGE switchS11 or resistor R3.	a. Replace defective component (para 3-13b or fig. 4-4).
	b. Multimeter indicates short circuit (step) 14).	b. Defective resistor R3.	b. Replace resistor R 3 (22, fig. FO-19 and fig. 4-4).
15	a. Multimeter indicates open circuit (step 15).	a. Defective resistor R4 or RANGE switch S11.	a. Replace defective component (fig. 4-4 or para 3-13b).
	b. Multimeter indicates short circuit (step 15).	b. Defective resistor R4.	b. Replace resistor R4 (fig. 4-4).
16	Multimeter indicates open circuit (step 16).	Defective EXPOSURE switch S12, or LAMP TEST switch S6.	Replace defective switch (para 3-13b).
17	Multimeter indicates open circuit (step 17).	Defective EXPOSURE switch S12.	Replace (para 3-13b).
18	Multimeter indicates open circuit (step 18).	Defective DC EXPOSURE switch S13, or LAMP TEST switch S6.	Replace defective switch (para 3-13b)
19	Multimeter indicates open circuit (step 19).	Defective DC EXPOSURE switch S13 or diode CR6.	Replace switch S13 (para 3-13b) or diode CR6.
20	Vtvm indicstes no voltage (step 20).	Defective DC EXPOSURE switch S13.	Replace switch S13 (para 3-13b).

$$
4-17
$$

Table 4-17. Lens Cones Section Troubleshooting-Continued

Item Trouble symptom
21 Vtvm indicates no voltage (step).
22 INCR Indicator does not light (step 22).
23 INCR LIM indicator does not light (step 23).
24 DECR indicator does not light (step 24).

256 IN . indicator does not light (step 25).
26 a 12 IN . indicator does not light (step 26).
b. 6 IN. indicator does not extinguish (Step b. 26).

27 a 3 IN. indicator does not light (step 27).
b. 6 IN. indicator does not extinguish (step b. Defective diode CR45. 27).
a. 6 IN. indicator does not extinguish (step a Defective diode CR48. 28).
b. 44 mm indicator does not light (step 28). b. Defective 44 MM indicator cir- b. Repair wiring (fig. FO-13). cuit wiring.
c. DECR LIM indicator does not extinguish c. Defective transistor Q3 or resis- c. Replace defective components. (step 28).

Probable troublc
Correction
Defective DC EXPOSURE switch Replace switch S13 (para 3-13b). S13.
Defective diode CR58, CR59, or Replace defective diode (para 4-19). CR60.
Defective INCR LIM indicator cir- Repair wiring (fig. FO-13). cuit wiring.
Defective transistor Q9, diode Replace defective component (pare CR62 or CR63, or resistor 4-19). R40.
Defective transistor Q5 or resistor Replace defective component (para R26. 4-19).
a Defective 12 IN . indicator circuita. Repair wiring (fig. FO-13). wiring.
Defective diode CR49 or transis- b. Replace defective components) tor Q5. (para 4-19).
a Defective 3 IN. indicator circuit Repair wiring (fig. FO-13). wiring.

DECR LIM indicator does not tight (step 29).

UNDER indicator does not light (step 30).
UNDER indicator lights (step 31).
OVER indicator does not light (step 32). (

Defective Zener diode CR66, resis- Replace defective component (para tor R37, transistor Q11, resis- 4-19). tor R38, resistor R33, resistor R34, or diodes CR64 and CR65.
Defective Zener diode CR51. tran- Replace defective component (para sistors Q7 and Q8, or resistors R30 through R32.
Defective Zener diode CR51 or tran- Replace defective component (para sistor Q7.
Defective resistor R27, Zener diode CR50, resistor R29, or transistor Q6.
b. Replace diode CR45 (para 4-19).
a Replace diode CR48 (para 4-19). Replace
$4-19)$. 4-19). 4-19).
Replace defective component (para 4-19).
d. Lens Cones Section Voltage and Resistance Measurements. Use the schematic diagram (fig. FO-12), wiring diagram (fig. FO-13), and parts location diagrams (fig. 4-2, 4-3 4-4, FO 17 and FO-19) as an aid when making voltage and resistance measure ments.
(1) Voltage measurement. Measure the voltage in the lens cones section as follows. Connect the vtvm from pin B of connector $J 6$ to pin S of connector J 8 . The vtem should indicate +28 volts dc.
(2) Resistance measurements. Table 4-18 lists continuity measurements between the pins of connectors associated with the lens cones section. Make all measurements with power cable W9 disconnected from POWER connector $J 1$.

Table 4-18. Lens Cones Section Resistance Mecasurements Cu Penutty

	From connectorphas
J6	$J 8$
$\mathrm{Y} \cdot$	
A	
U	

$\begin{array}{cc}\text { Toconnector puns } \\ \text { J6 } & J 7\end{array}$ $\mathrm{N}^{\mathrm{J}}{ }^{\text {- }}$

R
R

Table 4-18. Lens Cones Section Resistance Measurements-

Z
R
C.

4-13. Camera Body Section Troubleshooting
a. Preliminary Procedures.
(1) Fabricate the variable voltage test fixture in accordance with figure 4-1.
(2) Connect one end of a 2-foot long wire (black) to the chassis of the test panel. Install a small alligator clip to the other end of the wire. This connection will serve as the test ground
(3) Set MASTER switch to CAMERA BODY.
(4) Set POWER switch to ON.
b. Bench Test. Perform the control-power supply section bench test given in table 4-19.

WARNING

Be careful when applying voltage or grounds to pins of connectors. Make connectiona with power off. Always disconnect the teat voltage after observations are completed and before
proceeding to the next step.
NOTE
All switches remain in positions unless instructed otherwise. When making continuity or resistance measurements, always disconnect power cable W9 from POWER connector J1. An asterisk (*) next to the step number serves as a reminder to disconnect power cable W9 from primary power source.

Table 4-19. Camera Body Section Bench Test

Step	Procedse
1	Set MODE switch to AUTO.
2	Set CYCLE PULSE switch to MANUAL momentarily.
3*	Pleasure resistance between J3, pin N and SCOPE VERT terminal. using multimeter.
4*	Measure resistance between J3, pin N and PULSE TIMER PULSE terminal using multimeter.
5	Apply a +28 volt dc output from the variable voltage text fixture to J3, pin V momentarily.
$6 *$	Set MODE switch at PULSE and measure continuity between J 3 , pin Z and ground, using multimeter.
7*	Measure resistance between J3, pin N and SCOPE VERT terminal
8	Set MODE switch to PULSE IMC.
9^{*}	Measure continuity between J 3 , pin Z and ground, using multimeter.
10*	Measure continuity between J3. pin X and ground, using multimeter.
11°	Measure resistance between J3, pin N and SCOPE VERT terminal
12*	Set MODE switch to NIGHT and measure continuity between J 3 , pin Z and ground, using multimeter.
13*	Measure resistance between J3, pin a and SCOPE VERT terminal
14*	Measure continuity between J3. pin X and ground, using multimeter.
15*	Measure continuity between J 3 , pin c and ground using multimeter.
16	Apply a +12 -volt dc output from the variable voltage test fixture to J3, pin Y momentarily.
17	Apply a +28 -volt dc output from the variable voltage text fixture to J3, pin T.
18	Apply a +28 -volt dc output from the variable voltage teat fixture to J3, pin B.
19	Apply a +28 -volt dc output from the variable voltage test fixture to J3, pin F.
20	Apply a +28 -volt dc output from the variable voltage test fixture to-J3 pin M.
21	Apply a +28 -volt dc output from the variable voltage text fixture to J3, pin U.
22	Connect test ground to J2, pin K.
23	Set TEST RIGHT ASSEMBLY switch at positions 6 through 8 , and measure continuity between J 5 , pin a and ground.
24	TEST RIGHT ASSEMBLY switch:
	Position Measure voltage between
	J 5 , pin N and ground.
	2 thru 8 J5, pin W and ground
	2 thru $8 \quad J 5$, pin B and ground.
25	TEST RIGHT ASSEMBLY switch:
	Position Ground pin
	J5, pin K
	J5, pin c
	J5, pin L

Set MODE switch to AUTO.
Set CYCLE PULSE switch to MANUAL momentarily. Pleasure resistance between J3, pin N and SCOPE VERT terminal. using multimeter.

PULSE terminal using multimeter.
Apply a +28 volt dc output from the variable voltage text fixture to J 3 , pin V momentarily.

J 3 , pin Z and ground, using multimeter. terminal
Set MODE switch to PULSE IMC. multimeter.
Measure continuity between J3. pin X and ground, using multimeter. minal
Set MODE switch to NIGHT and measure continuity between
J3, pin Z and ground, using multimeter.
casure resistance between J3, pin a and SCOPE VERT ter-
Measure continuity between J3. pin X and ground, using multimeter. timeter.
Apply a +12 -volt dc output from the variable voltage test fixture to J3, pin Y momentarily.
Apply a +28 -volt dc output from the variable voltage text fixture to J 3 , pin T.
Apply a +28 -volt dc output from the variable voltage teat fixture to J 3 , pin B.
Apply a +28 -volt dc output from the variable voltage test fix-
-
Apply a +28 -volt dc output from the variable voltage test fix-
-
ture to J3, pin U.
Set TEST RIGHT ASSEMBLY switch at positions 6 through
8, and measure continuity between J , pin a and ground.
TEST RIGHT ASSEMBLY switch:

Resultfindication

WIDTH, INTVL and SCOPE indicators light. CYCLE PULSE indicator lights.
Multimeter indicates 2.7 K ohms resistance.
Multimeter indicates 3.7 K ohms resistance.
AUTO TRIP indicator lights.
Multimeter indicates zero resistance.
Multimeter indicates 2.7 K ohms resistance.
DC VOLTS indicator lights.
Multimeter indicates zero resistance.
Multimeter indicates zero resistance.
Multimeter indicates 2.7 K ohms. resistance.
Multimeter Indicates zero resistance.
Multimeter indicates 2.7 K ohms resistance.
Multimeter indicates zero resistance.
Multimeter indicates zero resistance.
NIGHT indicator lights.
EXP RESET indicator lights.
BODY OPR indicator lights.
BODY RDY indicator lights.
FILM FAIL indicator lights.
NIGHT INTLK indicator lights.
SIM OPR indicator lights. Multimeter indicates zero resistance.
Vtvm indicates +28 vdc .

RIGHT B indicator lights.

Table 4-19. Camera Body Section Bench Test - Continued

Table 4-19. Camera Body Section Bench Test - Continued

Step			Reoultuindesatun
28	Hasituon	able collage tess fas ture to	
(cont)	8	J4, pin J	
	9	J4, pin U	
	10	J4, pink	
	11	J4, pin J	
	12	J4, pina	
	13	J4, pin K	
	15	J4, pin P	
	16	J4, pin p	
	17	J4, pin b	

TEST LEFT ASSEMBLY switch:

Position	firuend pin
1	fa, pinL
2	J.4, pin D
3	J4, pin p
4	J4, pin h
5	J4, pin V
6	J4, pin c
7	J4, pinqu
8	JA, pinh
9	J4, pin $\mathbf{r}_{\mathbf{F}}$
10	dis, pin V
11	J4, pin h
12	J4, pin p
13	J4, pinL
14	J4, pin L
15	J4, pin R
16	J4, pin R
17	J4, pin r

c. Camera Body Section Troubleshooting Procedures. Steps referenced in the Trouble symptom column in table 4-20, refer to the numbered steps in the bench test (b above). Electronic parts referenced in the
troubleshooting table are shown in the schematic diagram (fig. FO-12) and wiring diagrams (fig. FO-13 and FO-14).

Table 4-20. Camera Body Section Troubleshooting

Item	Trouble cymptom
1	a. WIDTH, SCOPE and INTVL indicators does not light(step 1).
	b. Any one of three indicators does not light (step 1).
2	CYCLE PULSE indicator does not light (step 2).
3	a. Multimeter indicates open circuit (step 3).
	b. Multimeter indicates short circuit or less than 2.7 K ohms (step3).
4	Multirneter indicates open circuit (step 4).
5	AUTO TRIP indicator does not light(step5).
5	Multimeter indicates open circuit (step 6).
7	Multimeter indicates open circuit (step7).
8	DC VOLTS indicator does not light (step8).
9	Multimeter indicates open circuit (step9).
10	Multimeter indicates open circuit (step 10).
11	Multimeter indicates open(step 11).
12	Multimeter indicates open circuit (step 12)
13	Multimeter indicates open circuit (step 13).
14	Multimeter indicates open circuit (step 14).
15	Multimeter indicates open circuit (step 15).
16	NIGHT indicator does not light(step 16).

WIDTH. SCOPE and INTVL indicators ght(step1).
Any one of three indicators does not light CYCLE PULSE indicator dees not light (step 2).
b. Multimeter indicates short circuit or less than 2.7 K ohms(step3).
Multixneter indicates apen circuit (step 4). AUTO TRIP indicator does not light(step5).
meter indicates open circuit (atep6) Multimeter indicates open circuit (step7).

Multimeter indicates open circuit (Btep9). Multimeter indicates open circuit (step 10). Multimeter indicates open(step 11). Mutimeter indicates open circuit (step 12) Multimeter indicates open circuit (step 14). Multimeter indicates open circuit (step 15). NIGHT indicator does not light (step 16).

Probable trouble a. Defective MODE switch S5.	Correctson a. Replace switch 55 (para 4-18b).
b. Defective MASTER switch Sl .	b. Replace switch S1 (para 4-18b).
Defective CYCLE PULSE switch S2 or diode CR 7. a. Defertive MODE switch S 5 or MASTER switch S1.	Replace switch S2 (para 3-13b) or diode CR7 (para 4-19). a. Replace defective switch (para 4-18b).
b. Defective resistor R1.	b. Replace resistor R 1 ($\mathrm{para}_{4} 4$-19).
Defective MASTER switch S 1	Replace switch S1 (para4-18b).
Defective MODE switch $\$ 5$ or diode CR 19.	Feplace switch S5 (para 4-18b) or diode CR 19 (para 4-19).
Defective MODE switch S5.	Replace switch S5 (para 4-18b).
Defective MODE switchS5.	Replace switch S5 (para 4-18b).
Defective MODE zwitch S5 or MASTER switch S1.	Replace defective switch (para 4-18b).
Defective MODE switch S5.	Replace switch S5 (para 4-18b).
Defective MODE switch S5.	Replace switch S5 (para 4-18b).
Defective MODE switch S5.	Replace switch S5 (para 4-18h).
Defective MODE switch S5.	Replace switch S5 (para 4-18b).
Defective MODE switch S5	Replace switch 55 (para 4-18b).
Defective MODE switch S5	Replace switch S5 (para 4-18b).
Defective MODE bwitch 55	Replace switch S5 (para 4-18b).
Defective diode CR23 or resistor R6.	Replace defective component. (para 4-19).

Table 4-20. Camera Body Section Troubleshooting-Continued

It"'	Ir.uthe	Probable troubl	Correction
17	EXP RFALET indicator does not light (step 17).	Defective EXP RESET indicator wiring.	Repair wiring (fig. FO-13).
18	HOLY OPR indicatar does not light (step 18).	Defective BODY OPR indicator wiring.	Repair wiring (fig. FO-13).
19	HODY RDY indicatur does not light (step 19).	Defective BODY RDY indicator wiring.	Repair wiring(fig. FO-13).
20	FILM F FAIL indicator does not light (step 20).	Defective FILM FAIL indicator wiring.	Repair wiring(fig. FO-13).
21	NIGHT INTLK indicator does not light (step 21).	Defective NIGHT INTLK indicator wiring.	Repair wiring (fig. FO-13).
22	SIM OPR indicator does not light (step22).	Defective SIM OPR indicator wiring.	Repair wiring (fig. FO-13).
23	Multimeter indicators open circuit in any or all switch positions (step 23).	Defective TEST RIGHT ASSEMBLY switch 59.	Replace switch S9 (para 4-18j).
24	Vivm indicates zero voltage in any or all switch positions(step24).	Defective TEST RIGHT ASSEMBLY switch $\mathrm{S9}$.	Replace switch S9 (para 4-18b).
25	RIGHT B indicator does not light in any or all switch positions(step25).	Defective TEST RIGHT ASSEMBLY switch S 9 .	Replace switch S9 (pars 4-186).
26	RIGHT A indirator does not light in any or all switch pusitions (step26).	Defective TEST RIGHT ASSEMBLY switch S 9 .	Replace switch S9 (para 4-18b).
27	Muitime er indicates open circuit in any or all switch positions (step 27).	Defective TEST LEFT ASSEMBLY switch 58 .	Replace switch S8 (para 4-183).
28	LEFT A ndicator does not light in any or all switch positions(step 28).	Defective TEST LEFT ASSEMBLY switch 58 .	Replace switch S8 (para 4-18b).
29	l.EFT B andicator does not light in any or all switch positions(step 29).	Defective TEST LEFT ASSEMBLY switchS8.	Replace switch S8 (para 4-18b).

d. Camera Body Section Voltage and Resistance Measurements. Use the schematic diagram (fig FO-12), wiring diagram (fig. FO-13), and parts location diagrams fig. 4-2, 4-3, 4-4, EO-17) and FO-19 as an aid when making voltage and resistance measurements.
(1) Voltage measurements. Table 4-21 lists the voltages present on the connector associated with the camera body section. These voltages are present only when MASTER switch is set to CAMERA BODY and with power applied to the test panel.

Table 4-21. Camera Body Section Voltage Measurements

Connector	Voltage
J3, pins E and W	28 volts dc
J4, pins W. H, N	28 volts dc
J5, pin F and Y	28 volts dc

(2) Resistance measurements. Table 4-22 lists continuity measurements between the pins of connectors associated with the camera body section. Make all measurements with power cable W9 disconnected from POWER connector J1.

Table 4-22. Camera Body Section Resistance Measurements

			tun			
	Frum	tor p		con	pins	
Ji	d 3	J4	J5	J3	J4	J5
$A^{\text {a }}$						
M				D		
J				G		
L				H		
	A*					
	${ }^{\text {d }}$					
	${ }^{\text {* }}$					
	d			A		
	E			W		

Table 4-22. Camera Body Section Resistance MeasurementsContinued

Contunuty						
	From conneetlur pins			Tuconnectur pins		
J2	J3	$\begin{aligned} & j_{1} \\ & \mathbf{A}^{*} \\ & \mathbf{s}^{*} \\ & \mathbf{d}^{*} \end{aligned}$	J5	JJ	d	J5
			W			b
			D*			
			A^{*}			
			C*			
			E*			
			R*			
			X*			

-Ground pin
4-14. Camera Test Adapter GS Trouble-t shooting
a. Bench Test. Perform the camera test adapter bench test given in paragraph 3-9a
b. Camera Test Adapter GS Troubleshooting Procedures. Steps referenced. in 1 he trouble symptom column table 4-23 below, refer to the numbered steps in the bench test (para 3-9a). Electronic parts referenced in the table are shown in schematic diagram (fig. FO-15) and wiring diagram (fig. FO-16).

NOTE

The GS troubleshooting procedures supplement the DS troubleshooting procedures (para 3-9b). Perform the steps in the DS troubleshooting procedures prior to performing the procedures in table 4-23.

Table 4-23. Camera Test Adapter GS Troubleshooting

Jtam	Trauble	Probeble trouble	Correction
1	OPR ON indicator does not light(step2).	Diode CR20 defective.	Replace diode CR20 (pary 4-24c).
2	FILM FAIL indica tor does not light (step2).	DiodeCE17 defective.	Replace diode CR17 (pare 4-24c).
3	INTLK indicatordoes not light (step2).	DiodeCR19 defective.	Replace diode CR19 (para 4-24c).
4	NGG HT indicator does not Light (step2).	Diode CR18 defective.	Replace diade CR18 (para 4-24c).
5	SYNC indicator does not light (step 2).	Diode CR14 defective.	Replace diode CR14 (para 4-24c).
6	CYCLE indicator does not light (step2).	DiodeCP defective.	Replace diode CR16 (para 4-24c).
7	DATA indicatordoes not light (8tep 4).	Transisu. Q2 or aseociated circuit defective.	Replace transistor or associs ted de fective component (para 4-34c).
8	FLASHindicator does not light (step 5).	Transistor Q1 or aseociated circuit defective.	Replace transistor or associated defecíve component (para 4-24c).
9	Vtren does not indicate 115 vac when ac input to pe el transformer is checked (step 12).	a. Power relay K 2 defective. b. Power transformer T1 defective. c. Exposure relay K1 solenoid defective. d. Diode CR5 defective.	a. Replace relay K 2 (para 4-24c). b. Replace transformer (para 4-24a). c. Replace relay K1 (para 4-24c). d. Replace diode CR5 (para 4 -24c).
10	Incorrect vtvm indication for EXPOSURE switch setting(steps 13, 14, 15, 16).	Power supply rectifier or filter circuit defective	Replace defective component (para 4-24c).
11	No vtro indication when EXPOSURE ewitch is setat 44 MM CAL (step 13).	a. Resistor R9 defective. b. Power supply rectifier, filter, resistor load circuit defective. c. Power transformer Tl defective.	a. Repuace resistor R9 (para 4-24c). b. Replace defective component (para 4-24c). c. Replace transforme: T1 (pare 4-24a).
12	No vevm indication when EXPOSURE switch is setat3IN. CAL(step 14).	a. Diode CR6 defective. b. EXPOSURE switch S2 defec tive c. Resistor R8 defective.	a. Replace diode CR6 (para4-24c). b. Replace switch 52 (para 4-24b). c. Replace resistor R8 (para 4-24c).
13	No vtum indication when EXPQSURE switch is setat6IN. CAL(step 15).	a. Relay K1 contacts defective. b. Resistor R7 defective.	a. Replace relay K1 (para 4-24c). b. Replace resistor R7 (para 4-24c).
14	No vtvm indication when EXPCSURE switch is setat 12 IN. CAL (step 16).	a. Diode CR7 defective. b. Resistor $\mathbf{R 6}$ defective	a. Replace diode CR7 (para 4-24c). b. Replace resistor R6 (para 4-24c).

c. Camera Test Adapter Voltage and Resistance Measurements. Use the schematic diagram (fig. FO-15), wiring diagram (fig. FO-16), and parts location diagremn (fig. 3-7 and 4-5) as an sid when making voltage and resistance measurements.
(1) Voltage measurements. The transistor terminal voltages listed in table 4-24 below are mad with the multimeter. The voltage measurements art taken with the camera test adapter front panel POWER switch set to ON .

Table 4-24. Camera Test Adapter Voltage Measurements

Trenesator	Voteges toground		
	Emitter	Collector	Buse
A3Q1	0 vdc	+28 vdc	0 vde
A3Q2	O vde	-28 vdc	0 vde

(2) Resistance measurements. Make all resistance measurements with power cable Wo disconnected from connector J1.
(a) The dc resistance of power transformer T1 windings are listed below:

Terminals	Resis lance (ohma)
$1-2$	130
$3-4$	11

(b) The resistance measurements of the camera

Cunnector-pin teot poonte	Remetance
P1-D toP2-A	0 ohm
P1-E toP2-N	0 ohm
P1-M toP3-a	0 ohm
P1-H toP1-Z	0 ohm

Table 4-25. Camera Test Adapter Resistance Measurements - Continued

Connertiormpun test pounts	Resistance	Connector-pun testpounts	Ressistance
P1-R to P1-N, ${ }^{\text {P }}$	0 ohm	P2-S to P3-K (with POWER switch to OFF)	Infinity
J2-C to P2-E	0 ohm	P2-S to P3-K (with POWER awitch to ON)	0 ohm
J2-C to Jct CR11 and CR12	0 ohm	P2-W to J4 (- TACH test point), P3-J	0 ohm
P2-A to P2-V, R, B, C	0 ohem	P2-Y to P3-M	0 ohm
P2-G to P3-H	0 ohm	P3-A to P3-W, J1-H, L	0 ohm
P2-H to J3 (EXPOSURE test point)	0 ohm	P3-d to P2-P	0 ohm
P2-L to P2-K	0 ohm	P3-G to P2-b	0 ohm
P2-M toP3-L	0 ohm	J1-G to P2-S	0 ohm

Section IV. GS MAINTENANCE OF CAMERA ANALYZER

WARNING

Disconnect the power source from the equipment when making repairs.

NOTE
GS maintenance includes all repair operations covered in TM 11-6760-239-12 and DS maintenance as well as those covered in this chapter.

```
4-15. Camera Analyzer GS Repair Proce-
    dures
```

Most of the assemblies, subassemblies, and parts in the camera analyzer can be reached easily and replaced without the use of special tools. When replacing parts, the general techniques and precautions in a through c below apply.

WARNING
Acetone is toxic and flammable. Use only in small quantities in a well-ventilated area. Do not breathe vapors or allow liquid to contact the skin. Do not use in the presence of open flame or sparks.
a. To remove or loosen liquid staked parts, carefully scrape away any visible staking compound first, then attempt to loosen part. If necessary, apply heat to the screw using a soldering iron; heat only the staked part. If heat fails, apply small quantities of acetone, Federal Specification 0-A-51, directly to the area with a small brush. Remove acetone as soon as possible. To apply liquid staking refer to paragraph 4-16b.
b. Use a pencil-type soldering iron with a 25 -watt maximum capacity. This equipment is transistorized. If the iron must be used with ac, use an isolating trans former between the iron and the line. Do not use a soldering gun near the transistorized assemblies; damaging voltages may be induced in the circuit components.
c. When soldering transistor leads, solder quickly. Whenever wiring or parts permit, use a heat sink (such as long-nosed pliers) between the solder point and the transistor.
d. After disassembling the basic test panel (para

3-13a), refer only to the paragraphs that contain instructions concerning the defective area.

4-16. Liquid Staking

Liquid staking (Glyptal 1201F) is a paste that is applied to machine screws, adjustments, nuts and other fasteners to lock them in place.
a. Grade. Liquid staking grade 4 (Glyptal 1201F, manufactured by General Electric Co., Schenectady, New York) is the only grade used in the camera analyzer.
b. Application. Before it hardens, liquid staking can be applied as follows:
(1) Using a brush, apply liquid staking to the screw threads. Rerrove excess liquid staking.
(2) If the screw is placed in a blind hole, reverse the rotation occasionally to allow trapped air to escape.
(3) If necessary to thin liquid staking, use Glyptal 1500 Thinner (manufactured by General Electric Co., Schenectady, New York).
(4) Approximately 12 hours curing time is $\mathrm{r} \theta$ quired. Heat, not exceeding $212^{\circ} \mathrm{F}$. from 3 to 5 hours, may be used to accelerate curing.

4-17. Epoxy Coating

After any maintenance has been performed that re quires removal of the surface coating on printed circuit board and components assemblies, the expoced areas must be recoated for fungus and moisture proteotion using the following procedure.

WARNING

Xylol is toxic and flammable, use it only in small quantitios in a well ventilated area. Do not breathe vapors or allow liquid to contact the skin. Do not use in the presense of open flame or sparks.
a. Part A (Resin). Measure 100 parts by weight of Araldite 571CX (manufactured by Ciba Co., Fair Lawn, N.J.) with 29 parts by weight of Beetle 216-8 (manufactured by American Cyanamid Co.) and stir well. Mis 27 parts by weight of Xylol (Federal Specifi-
cation TT-X-916) and stir well Mix 13 parts by weight of Diacetone Alcohol (Federal Specification O-D-306) and stir well Store in separate container.
b. Part B (Hardener). Measure 100 parts by weight of Araldite 820 (manufactured by Ciba Co., Fair Lawn, N.J.) with 37.5 parts by weight of Xylol (Federal Specification TT-X-916) and stir well Mix 20 parts by weight of Butyl Alcohol (Federal Specification TT-B-846) and stir well. Store in separate container.
c. To Prepare Epoxy For immediate Use. To prepare the epoxy for immediate use, mix two parts "A" (Resin) with one part "B" (Hardener) in a quantity that can be used in eight hours. Mix thoroughly. Brush the mixture onto the areas to be coated making sure to avoid areas that require mechanical movement, such as control adjustments and wafer switch contacts. The epoxy mixture will dry to the touch in approximately 1 hour when applied in a film of 0.005 to 0.010 inch thickness Total curing time requires 24 hours at room temperature. Curing time can be shortened by heating in a circulating oven at $150^{\circ} \mathrm{F}$. for 3 hours.

4-18. Camera Analyzer GS Replacement Procedures fig. FO-19)

a Replacement of POWER Connector J1, SYS SIMULATOR Connector J2, BODY Connector J3, LEFT ASSEMBLY Connector J4, RIGHT ASSEMBLY Connector J5, LENS CONE Connector J6, SENSOR Connector J7, MODULE Connector J8, CONTROL (J1) Connector J9, CONTROL (J2) Connector J10, or MODULES Connector J11. To replace these connector\& proceed as follows:
(1) Perform the procedures in paragraph 3-13a(1), (2) and (3).
(2) Unsolder and carefully mark or tag all electrical connections on rear of connector (5, fig. FO-19).
(3) Remove four screws (1), washers (2) and locknuts (3) which secure connector (5) to rear of front Panel.

NOTE

Connectors J1, J3, J5, J7, J8 and J10 have terminals installed on the mounting hardware. When installing a replacement connector, make sure the terminals are located in the same position

NOTE

Connector J9 has a board assembly A26 assembly (PN7912-149) installed on the mounting hardware. When installing a replacement connector, make sure the assembly is located in the same position.
(4) Remove connector (5) from behind front panel
(5) Replace connector (5) by reversing steps in $\mathrm{a}(2)$, (3), and (4).
(6) Replace the test panel in the combination case
by replacing 14 screws.
b. Replacement of MASTER Switch S1, MODF Switch S5, TEST LEFT ASSEMBLY Switch S8, TEST RIGHT ASSEMBLY Switch S9, or TEST Switch S10. To replace these switches, proceed as follows:
(1) Perform the procedures in paragraph $3-13 \mathrm{a}(1)$, (2), and (3).
(2) Unsolder and carefully mark or tag all electrical connections on wafers of switch (20, fig. FO-19).
(3) Loosen two setscrews (21 ref) which secure knob (21) onto shaft of switch (20).
(4) Remove knob (21).
(5) Remove nut (20 ref) and washer (20 ref) from shaft of switch (20).

NOTE

The rear of TEST switch S10 is used to mount assembly A15. When removing switch S10, remove two additional nuts (20 ref) and washers (20 ref) mounting the assembly in position. When installing a replacement switch, make sure the assembly is located in the same position.
(6) Remove switch (20) from behind front panel
(7) Replace switch (20) by reversing steps in (2) through (6) above.
(8) Replace the test panel in the combination case by replacing 14 screws
c. Replacement of Lamp Sockets XDS1 Through XDS4. To replace the lamp sockets, proceed as follows:
(1) Perform the procedure in paragraph 3-13a(1), (2), and (3).
(2) Disconnect wiring to socket (53, fig. FO-19) by removing two screws (53 ref), two washers (54) and two terminals (55).
(3) Remove lamp (56) from socket (53).
(4) Remove two screws (51) and nuts (52) which secure socket (53) to chassis
(5) Remove socket (53).
(6) Replace socket (53) by reversing steps in (2) through (5) above.
(7) Replace the test panel in the combination case by replacing 14 screws.
d. Replacement of Transistors Q1 and Q2. To replace these transistors, proceed as follows
(1) Perform the procedure in paragraph 3-13a(1). (2) and (3).
(2) Unsolder and carefully mark or tag all electrical connections on the transistor (44, fig. FO-19).
(3) Remove two screws (38), two nuts (39) ground terminal (40) with lead wire attached, washer (41), two sleeves (42), transistor (44), and thermafilm washer (43).
(4) Replace the transistor (44) by reversing steps in (2) and (3).
(5) Replace the test panel in the combination case by replacing 14 screws.
e. Replacement of Transformer T2. To replace the trausiormer, proceed as follows:
(1) Perform the procedure in paragraph 3-13a(1), (2), and (3).
(2) Remove the four screws (27, fig. FO-19) that vecure the chassis and components assembly to the top and Settom support $(33,34)$.
(3) Remove the screw (35) and washer (36) that secure the chassis and components assembly to the post (37).

NOTE
When performing step (4) below, avoid straining the wire connections to the chassis and components assembly (29).
(4) Carefully place the chassis and components assembly (29) to a position suitable for removing the transformer (50).
(5) Unsolder and carefully mark or tag all electrical connections on the transformer (50).
(6) Remove four screws (48) and four nuts (49) that secure the transformer (50) to the chassis and components assembly.
(7) Remove the transformer (50).
(8) Replace the transformer by reversing steps in (2) throuri (7) above.
(9) Replace the test panel in the combination case by replacing 14 screws.
f. Replacement of Transformer T1. To replace the transformer, proceed as follows:
(1) Perform steps in e(1) through (4) above.
(2) Unsulder and carefully mark or tag all electricar cuanections on the transformer (47).
(3) Remove two screws (45) and two nuts (46) that secure transformer (47) to the chassis and components assembly.
(4) Remove transformer (47).
(5) Replace the transformer (47) by reversing steps in (2), (3), and (4) above.
(6) Replace the test panel in the combination case by replacing 14 screws.

```
4-19. Disassembly of Printed Circuit
    Board Components Assembly
    A16.
        (fig. 4-2)
```

a. Per.orm steps in paragraph 3-13o(1) through (3) for access to components on assembly A16.
b. Perform steps in paragraph 3-13i(2) through (7) to renuove assembly A16 from the camera analyzer.
c. When replacing switches (11,31 , and 84 , fig. 4-2), unsolder and carefully tuark or tag all electrica! connections on wai ors of switches.

NOTE
If the setting of any variable resistor (165 , 167,174 , or 199) is disturbed during the disassembling procers, perform the appropriate
adjestment procedure given in paragraph 3-10゙ after reassembling A16.
d. when replacing other components (resistors, capacitors, diodes, transistors, relays, or integrated circuit assemblies), similarly unsolder and carefully mark or tag all electrical leads.

$$
\begin{aligned}
& \text { 4-20. Reassembly of Printed Circuit } \\
& \text { Board and Components Assembly } \\
& \text { A } 16 . \\
& \text { (fig. } 4-2)
\end{aligned}
$$

c. Replace any component that was removed in the reverse order of removal.

NOTE

If it is necessary to spray Epoxy coating, thin with Xylol (Federa! Specification TT-X-916).
b. Mask over $5 / 16$-inch on both sides of connector contacts before applying Epory coating (para 4-17).
c. Mask over screw adjustment of variable resisturs R2, R18, R20, and R23 (199, 174, 167 and 165, fig. 4-2) and the holes of test points TP1 through TP6 ($185,188,210,170,168$ and 98) before applying Epoxy coating (para 4-17).
d. Replace A16 in the camera analyzer by reversing steps in paragraph 3-i(2) through (7).
e. If any variable resistor is replaced or its control setting is disturbed during the disassembly of A16, perform the appropriate adjustment procedure given in paragraph 3-15.
f. After step e above is accomplished (if applicable), replace the test panel in the combination case by re placing 14 screws.
4-21. Disassembly of Chassis and
Component Assembly
a. Perform steps in paragraph 3-13a (1) through (3) for access to chassis and component assembly.

NOTE

It may not be necessary to remove the chassis and component assembly (29 , fig. FO-19) completely from the camera analyzer for dis assembly purposes. If this is the case and dis assembly is attempted without unsoldering all parts, position the assembly carefully after performing step in b above to prevent strain on electrical wiring.
b. Release the chassis and component assembly by removing four screws(27) and four nuts(28).
c. Partially withdraw the chassis and component assembly without producing strain on its wire leads, then unsolder and carefully mark or tag all electrical connections to the assembly.
d. To remove lamp sockets, perform steps in para graph 4-18c (2) through (5).
e. To remove transistors Q1 or Q2, perform steps in

Key to Fig. 4-2

Figure 4-2(1). Printed circuit board and component assembly A16, parts location (sheet 1 of 5).

Figure 4-2(2). Printed circuit board and component assembly A16, parts location (sheet 2 of 5).

Figure 4-2(B)inted circuit board and component assembly A16, parts location (sheet 3 of 5).

Figure 4-2(4). Printed circuit board and component assembly A16. parts location (sheet 4 of 5).

Figure 4-2(5). Printed circuit board and component assembly A16, parts location (sheet 3 of 5).

Key to fig. 4-3.

Figure 4-3. Chassis and component assembly, parts location
paragraph 4-18d(2) and (3).
f. To remove transformer T2, perform steps in paragraph 4-18e (5) through (7).
g. To remove transformer T1, perform steps in paragraph 4-18f(2) through (4).
h. When replacingother componentstresistors,
capacitors, or diodes), similarly umsolder and carefully mark and tag all electrical connections.

4-22. Assembly of Chassis and Component Assembly
(fig. 4-3)
a Replace any component that was removed in essentially the reverserder of removal.

NOTE

If it is necessary to spray Epoxy coating, thin with Xylol (Federal Specification TT-X-916).
b. Mask over 19 terminals on both sides of the chassis and component assembly before applying Epoxy coating (para 4-17).
c Replace the chassis and component assembly in the camera analyzer by reversing the procedures in paragraph 4-21b and c.
d. Replace the test panel in the combination case by replacing 14 screws.

Figure 4-4. Assembly A15, parts location.

WARNING

Disconnect the power source from the equipment when making repairs.

NOTE

GS maintenance includes all repair operations covered in TM 11-6760-239-12 and DS maintenance as well as those covered in this chapter.

4-23. Camera Test Adapter GS Repair
 Procedures

The camera test adapter repair procedures are identical to the camera analyzer GS repair procedures. Re fer to paragraph 4-15 for camera test adapter GS re
pair procedures.
4-24. Camera Test Adapter GS Replacement ment Procedures (fig. 4-5)
a. Replacement of Transformer T1. Replace transformer T1 (2) as follows
(1) Periorm the procedure in paragraph 3-19i(1) through (4).
(2) Unsolder and carefully mark or tag all electrical connections to transformer TI (2).
(3) Remove two nuts (3) and two washers (4) securing transformer T 1 (2) to chassis and carefully remove transformer.

1 Mode and exposure board and switch assembly A3
2 Trunsformer T1
Nut(2)
Washer (2)
Switch, rotary, FSDOSURES2
Switch, rotary: A° DES1
Relay K1, K2 (2)
8 Transistor Q1, Q2 (2)
9 Capacitor C1
10 Capac tor C2
11 Capacitor C3, C4 (2)
12 Resistor R1, R4 (2) Resistor R2, R5 (2)
1 Deleted

15 Resistor R6
16 Resistor R7
17 Resistor R8
18 Resistor R9
19 Resistor R10
20 Resistor, variable R11
21 Resistor, variable R12
22 Resistor, R13
23 Resistor R14
24 Resistor R15
25 Diode (CR1 through CR7, CR10 through CR14, and CR16 through CR21
26 Diode CR8
27 Diode CR9

Figure 4-5. Mode and exposure board and switch assembly, parts Iocation.
(4) Install replacement transformer T1 by revers ing the procedures in (2) and (3) above.
(5) Reassemble the camera test adapter by revers ing the procedure in paragraph 3-19i(1) through (4).
b. Replacement of MODE Switc $S_{S 1}$ or EXPOSURE Switch S2. Replace MODE switch S1 (6) or EXPOSURE switch S2 (5) as follows:
(1) Perform the procedure in paragraph 3-19i(1) through (4).
(2) Unsolder and carefully mark or tag all electrical connections to the switch.
(3) Unsolder the switch from the printed circuit board and carefully remove switch.
(4) Install a replacement switch by reversing the procedures in (2) and (3) above.
(5) Reassemble the camera test adapter by reversing the procedures in paragraph 3-19i(1) through (4).
c. Replacement of Remaining Electronic Compo nents. Replace any of the remaining electronic components as follows:
(1) Peiform the procedures in paragraph 3-19i(1) through (4).
(2) Unsolder and carefully mark or tag all electrical connections to the electronic component.
(3) Unsolder the electronic component in question and remove.
(4) Install the replacement part by reversing steps in (2) and (3) above.

NOTE

When replacing diodes or electrolytic capacitors, be sure to observe the correct polarities.
(5) Reassemble the camera test adapter by reversing the procedures in paragraph 3-19i(1) through (4).

4-25. Camera Test Adapter Adjustment Procedures

a. The camera test adapter procedures consist of adjustment of exposure test signal variable resistors R11 and R12 (20, 21, fig. 4-5). These adjustments are required after GS repairs have been performed on the equipment.
b. The test equipment required to perform the camera test adapter adjustment procedures are listed below.
(1) Simulator, Control System, Camera LS-36A.
(2) Voltmeter, Electronic ME-202ANU (vtvm).

4-26. Adjustment of Exposure Test Signal Variable Resistors R11 and R12 (fig. 4-6).

a. Connect the vtvm positive lead to pin 17 of mode and exposure and switch assembly $A 3$; connect the vtum negative lead to pin 20.
b. Using a jumper cable, connect pins J and K of camera test adapter connector P2.
c. Connect one end of cable assembly LM-110A (part of LS-36A) to LS-36A connector J705 and the other end to the 28 volts dc and 115 volts, 400 Hz power sources.
d. Connect one end of power cable W9 (part of LS-80A) to camera test adapter connector J1 and the other end to a +28 volts dc power source.
e Connect one end of cable assembly LA-174A (part of LS-36A) to camera test adapter connector P3 and the other end to LS-36A connector J706.
f. Set LS-36A POWEF awitch to ON.
g. Set camera test adapter EXPOSURE switch to 44 MMCAL
h. Set camera test adapter POWER switch to ON. Allow the equipment to warm up for approximately 15 minutes.
i. On mode and exposure board and switch assembly A3, adjust resistor R11 (20, fig. 4-5) for a $+134 \pm 6$ millivolts (mv) indication on the vtvm .
j. Set camera test adapter EXPOSURE, switch to OPR ALL.
k. On mode and exposure board and switch assembly A3, adjust resistor R12 (21, fig. 4-5) for a $+2.5 \pm 0.1$ volt dc indication on the vtvm.
l Set POWER switches on the LS-36A and camera test adapter to OFF.
m. Disconnect test setup.

Figure 4-6. Camera test adapter adjustments.

APPENDIX A

REFERENCES
The following publications contain information applicable to the direct support and general support repairman of Test Set, Analyzer Camera LS-80A.

DA Pam 310-4
DA Pam 310-7
TM 11-1510-204-20-2-1
TM 11-1510-204-35-2/1
TM 11-6625-203-12
TM 11-6625-366-15
TM 11-6625-537-14-1

TM11-6625-1703-15
TM 11-6720-236-12

TM 11-6720-236-35

TM 11-6720-245-20

TM 11-6720-245-34

TM 11-6720-250-12
TM 11-6720-250-35

TM 11-6760-220-12

TM 11-6760-238-12
TM 11-6760-242-15
TM 11-6760-245-12

Index of Technical Manuals, Technical Bulletins, Supply Manuais (Types 7, 8, and 9), Supply Bulletins, and Lubrication Orders.
U.S. Army Index of Modification Work Orders.

Organizational Maintenance Manual: Signal Electronic Equipment Configuration, Army Model OV-1D Aircraft.
Direct Support, General Support, and Depot Maintenance Manual: Signal Electronic Equipment Configuration, Army Model OV-ID Aircraft.
Operator and Organizational Maintenance Manual: Multimeter ANJURM-105, and AN/URM 105 C Including Multimeter ME-77/U.
Operator's Organizational, DS, GS, and Depot Maintenance Manual: Multimeter TS-352B/U.
Operator's, Organizational, Direit Support, General Support, and Depot Maintenance Marucil: Voltmeter, Electronic ME-202AJU. (NSN 6625-00-709-0288) and ME-202B/U (NSN 6625-00-972-4046).
Operator, Organizational, DS, GS, and Depot Maintenance Manual Including Repair Parts and Speciel Tool Lists: Oscilloscope AN/USM-281A.
Operator's and Organizational Maintenance Manual: Camera, Still Picture KA-76A and Lens Cones, Camera, Aerial Reconnaissance LA-370A, LA-371A, and LA-372A.
DS, GS, and Depot Maintenance Manual Including Repair Parts and Special Tool Lists: Camera, Still Picture KA-76A and Lens Cones, Camera, Aerial Reconnaissance LA-370A, LA-371A, and LA-372A.
Organizational Maintenance Manual Including Repair Parts and Special Tools List: Photographic Surveillance Systcm, Airborne KS-104A (6720-890-7623) and PhotographicSurveillanceSystem, Airborne KS-104B (6720-406-4653).
Direct Support and General Support Maintenance Manual Including Repair Parts and Special Tools List: Photographic Surveillance System, Airborne KS-104A (6720-890-7623) and Photographic Surveillance System, Airborne KS-104B (6720-406-4653).
Operator's and Organizational Maintenance Manual Including Repair Parts and Special Tools List: Photographic Surveillance System, Airborne KS-113A.
Direct Support, General Support. and Depot Maintenance Manual Including Repair Parts and Special Tcols List: Photographic Surveillance System, Airborne KS-113A.
Operator and Organizational Maintenance Manual: Test System, Photographic Surveillance LS-34A; Analyzer, Still Picture Camera LS-44A; Test System, Photographic Surveillance System LS-45A; Tool Kit, Still Picture Camera Maintenance LS-48A; Test Set, Converter, Altitude-Ground Speed Ratio LS-50A; Test Set, Scanner Alignment LS-51A; and Test Set, Vacuum Regulator Assembly LS-185A; as used for Testing, Camera, Still Picture KA-30A; and Photographic Surveillance Systems, Airberne KS-59() and KS-61A.
Operator's and Organizational Maintenance Manual Including Repair Parts and Spacial Tool Lists for Test Set, Control Panel, Fccal Plane Shutter LS-78A.
Operator's, Organizational, DS, GS, and Depot Maintenance Manual Including Repair Parts and Special Tool Lists: Timer, Digital Electronic LA-387A.
Operator's and Organizational Maintenance Manual Including Repair Parts and

TM 38-750
TM 55-1510-204-10/5

Special Tools Lists for Analyzer Set, Photographic Surveillance System LS-89A (FSN 6760-462-3041).
The Army Maintenance Management System (TAMMS). Operator's Manual: OV-1D Aircraft.

I N D E X

Paragraph Page
Accessories
Exposure test adapter. 3-14b 3-15
Module test adapter. 3-14c 3-15
Adjustments 3-153-16
Camera analyzer
Camera analyzer
Camera test adapter 4-25 4-34
AUTO mode, circuit analysis 2-21 3-25
Bench test:
Camera analyzer 3-7b 3-2
Camera body section 3-9a 4-19
Camera test adapter 4-11b $3-8$
$4-7$
Control-power supply section 4-9a 4-5
Internal test 2 circuit4-10a4-6
Lamp test circuit 4-8a 4-3
Lens cone section. 4-12b4-16
Cable assemblies repair 3-14 3-15
Camera analyzer 3-15 3-16
Electrical test3-253-22
Functional description
Physical tests and inspection 2-12-1
Power-distribution$\begin{array}{ll}3-24 & 3-19 \\ 2-4 & 2-5\end{array}$
Replacement procedures.3-13,
Troubleshooting -18 3-23-13
Voltage and resistance measurements 3-8
Camera body test circuits 3-8 2-17
Camera body section:
Benchtest. 4-13b 4-19
Troubleshooting 4-13c 4-21
Voltage and resistance measurements.4-13d
Camera cycle circuit 2-2c 4-22
Camera mode select circuit 2-1
camera teat adapter:4-25 4-34
Adjustments
Elretrical test
Functional description3-27
2-2 2-1
Physical tests and inspection3-26
Power distribution 2-18 2-213-22
Replacement procedures
Troubleshooting-19
3-183-9.
Voltage and resistance measurements 4-14 4-22 3-124-33Camera test adapter circuits (see specific circuit)Camera test adapter GS repair procedures3-8Chassis and component assembly disassembly
Chassis and component assembly reassembly 4-264-33Circuit Analysis (see specific item)
Cleaning
Cleaning
Camera analyzer 3-16
Camera test adapter 3-204-32
3-17
Common names 3-19 1-1Considerations before disassembly:Camera analyzer3-12
Camera test adapter 3-183-133-18

	Paragraph	Page
Control-power supply section:		
Bench test	4-11b	4-7
Troubleshooting.	4-11c	4-11
Voltage and resistance measurements	4-11d	4-15
Direct support test information	3-21	3-19
Disassembly: 4		
Chassis and component assembly	4-21	4-26
Mode and exposure board and switch assembly	4-24	4-33
Printed circuit board and components assembly.	4-19	4-26
DS electrical test:		
Camera analyzer.	3-25	3-22
Camera test adapter	3-27	3-22
DS physical tests and inspection		
Camera analyzer.	3-24	3-19
Camera test adapter.	3-26	3-22
DS troubleshooting		
Cameraanalyzer.	3-7	3-2
Camera test adapter.	3-9	3-8
Epoxy coating.	4-17	4-24
Exposure control circuit	2-2b	2-1
Exposure test adapter repair.	$3-14 \mathrm{~b}$	$3-15$ 4 4
Exposure test signal variable resistors R11 and R12 adjustment	4-26	
General support test procedures	4-29	$4-35$ $4-35$
General support test information.	4-27	
GS repair procedures. camera analyzer	4-15	4-24
GS troubleshooting		
Camera body section	$4-13 \mathrm{c}$	4-21
Camera test adapter..	4-14b	4-11
Control power supply section	$4-11 \mathrm{c}$	4-5
Internal test 1 circuit	$4-9 \mathrm{~b}$	4-6
Internal test 2 circuit.	$4-10 \mathrm{~b}$	4-3
Lamp test circuit. .	4-8b	4-17
Lens cone section	${ }_{4-5}^{4-12 \mathrm{c}}$	4-2
		2-26
IMC pulse mode. circuit analysis. Increase and decrease exposure circuit operation	2-23	2-20
Indexes of publications	1-2	
y circuits.		
Benchtest.	4-9a	$4-5$ $4-5$
Troubleshooting	4-9b	$4-5$ $4-6$
Voltage and resistance measurements	$4-9 \mathrm{c}$	4-6
Internal test 2 circuit:		
Bench test -	4-10a	4-6
Troubleshooting	4-10b	4-6
Voltage and resistance measurements	4-10c	4-6
Internal test circuits :	2-14	2-18
Isolating trouble within a stage	4-7	
Isolation checks..	3-6d	3-2
LA-406A film drive amplifier module circuits	2-6	2-8
LA-406A Intervalometer module test circuits	2-5	2-5
LA-406A PC board and component assembly module test circuit.	2-7	2-9
LA-406A test circuits.	2-8	2-11
Lamp test circuit 4 4-5		
Bench test Circuit analysis	$4-8 \mathrm{c}$ $2-2 \mathrm{e}$	2-3
Circuit analysis . Troubleshooting	2-2e	4-3
Troubleshooting	2-10	2-15
Lens cone operate test circuits.	2-11	
Lens cone photo sensor test circuits	2-12	2-14
Lens cone S/C test circuits	2-9	2-14
Lens cone section	4-12b	4-16
Bench test. Troubleshooting:	4-12c	4-17

Index 2

Lens Cone Section - Continued	Paragraph	Page
Voltage and resistance measurements	4-12d	4-18
Liquid staking	4-16	4-24
Localization checks	3-6c	3-2
Materials required for direct support maintenance	3-4	3-1
Materials required for general support	4-4	4-1
Mode and exposure board and switch assembly disassembly and reassembly	4-24	4-33
Module test adapter repair	3-14c	3-15
Night mode, circuit analysis	2-24	2-26
Organization of direct support (DS) maintenance	3-2	3-1
Organization of DS troubleshooting procedure	3-6	3-2
Organization of general support (GS) maintenance:	4-2	4-1
Parts replacement techniques:		
Camera analyzer	3-11	3-12
Camera test adapter	3-17	3-17
Photocell output simulator adjustment.	3-15b	3-17
Power distribution, camera analyzer	2-4	2-5
Power supply circuit:		
Input circuit. . .	2-19b	2-24
Output circuit	2-19a	2-22
	2-20	2-24
Printed circuit board and components assembly A16 disassembly	4-19	4-26
Printed circuit board and components assembly A16 reassembly .	4-20	4-26
PULSE mode, circuit analysis.	2-22	2-26
Reassembly:		
Chassis and component assembly.	4-22	4-32
Mode and exposure board and printed assembly.	4-24	4-33
Printed circuit board and components assembly A16.	4-20	4-26
Recycle initiate simulator circuit operation.	2-15	2-19
Recycle initiate circuit timing adjustmen t .	3-15d	3-17
Replacement procedures, camera analyzer (DS)		
Binding posts	3-13g	2-18
EV/H control R3	3-13f	3-14
FOOT LAMBERT control R4	3-13f	3-14
Indicating type fuseholders.	3-13h	3-14
Indicator lamps assemblies. .	3-13a	3-13
Motor tachometer simulator circuit load lamps	3-13e	3-14
OPERATE OFF switch S15	3-13d	3-14
PLUS OUTPUT switch S14	3-13c	3-13
Printed circuit board and components assembly A16	3-13i	3-14
Toggle type switches.	3-13b	3-13
Replacement procedures, camera analyzer (GS)		
Connectors	4-18a	4-25
Lamp sockets	4-18c	4-25
Switches	4-18b	4-25
Transformers.	4-18e	4-26
	4-18f	4-26
Transistors	4-18d	4-25
Replacement procedures, camera test adapter (DS)		
Active and refuseholder assemblies	3-19e	3-18
Binding post terminal assemblies .	3-19d	3-18
Comnectors $\ldots \ldots \ldots \ldots . .$.	3-19b	3-18
Multiple-section indicator assemblies.	3-19f	3-18
Pendant connector cables.	3-19g	3-18
Printed circuit board.	3-19i	3-19
Push button switches.	3-19b	3-18
Rotary switch assemblies	3-19c	3-18
Toggle switches.	3-19a	3-18
Replacement procedures, camera test adapter (GS):		
EXPOSURE switch S2 ...	4-246	4-34
Printed circuit board	4-24c	4-34
MODE switch S1	4-246	4-34
	4-24a	4-33

Paragraph Page
Scope of direct support maintenance 3-1 3-1
Scope of general support maintenance - 4-1
Sectionalization checks 3-2
Signal substitution 4-6 4-2
Simulated E V/H output adjustment. 3-15a 3-16
Simulated exposure feedback adjustment 3-15c 3-17
Special requirements. 3-19
Test equipment and tools required for direct support. tests. 3-22 3-19
Test circuits (see specific test circuit)
Test point circuits 2-2f 2-3
Tools and test equipment required for direct support maintenance. 3-1
Tools and test equipment required for general support maintenance
Test equipment and tools required required general support.test. 4-1 4-35
Troubleshooting procedures (see DS or GS troubleshooting)
Under and over exposure circuit operation 2-16
Under and over exposure circuit operation2-19Voltage and resistance measurements (see specific item)

Figure FO-1. Camera test adapter, overall block diagram.

Figure FO-2. Control-power supply intervalometer module test, block diagram.

Figure FO-5. Control-power supply tests, block diagram.

Figure FGifternal tests, block diagram.

Figure FO-9. Auto mode test, block diagram.

and IMC pulsemodetest, block diagram
TM 11-6760-239-34

Figure FO-11. Night mode test, block diagram

Night mode test, block diagram.

TM 11-6750-239-36

Figure FO-15. Camera test adapter, schematic diagram.

A. SWITCH SECTION WIRING DIAGRAM

SECTION	DETAIL		
	A16S1	A16S2	A16S3
A	A	A	A
B	B	A	A
C	A	A	A
D	B		A
E	A		
F	B		
G	A		
H	B		
J	A		
K	A		
L	A		

NOTE:
FOR PROPER ORIENTATION, VIEW DETAIL A OR B AS REFERENCED BY THE ARROW IN TOF

VIEW OF A16 (SEE PART 1).

 included with switch.)
4 Switch, pushbubton
OPERATE OFF S15 (Keyway washer in${ }^{4}$ Switch pushbutton
cluded with sw
5 Farnut
6 Washer (3 .).
6 Washer (3).
7 Waher
8 Indichator lam

 13 Indicator lamp assembly; INCR LIM, DECR LMM, INCR. and
DECR lights A10). (Mounting hardware included with indicator as-

 cator asembly,
16mp sembly; FiLM FAIL, AUTO TRIP, NIGHT
INT NTILK, and NiGHT lig 17 in licat or rilampemblv: CYCLE PULSE and RECYCLE INI-
TTATL Lights (A3). (Mounting hardware included with indicator as18 Indicator lamp assembly: R/C BRDG and DC VOLTS lights
 sembly.
20 Indicator lamp assembly; DC POWER, and AC POWER lights

${ }^{1}$ Screw (14)
2Indicator lam assembly. INTERVAL PULEE, INTVL and
HlicM DRVE lights (A14). (Mounting hardware included with indicator assembly.
inswith,
induched. wishbith, with swith.). 4 Sidith, pushbuutton OPERATE OFF S15. (Keyway washer in5 cluded with switc
Facennt
Washer
(3).
In Icicator lamp assembly, MOUNT AC, CAM 28V. AC 0A. and
 dicator assembly.
IO Indicor lam asembly; SYS READY FLASH AC NIGHT
EXP. and FASH DC lights All. (Mounting hardware included with
 2 Indicator lamp assembly; OVER and UNDER lights (A9).
 4mbly. Incator lampassembly: $44 \mathrm{MM}, 3$ IN. 6 IN.. and 12 IN. lights

 atar assembly $)$ am assembly; FILM FAIL, AUTO TRIP, NIGHT
16 Indicator Nam 16 Indicator lam assembly; FILM FAIL, AUTO TRIP, NIGHT
NTLK. and NGHT lighs (A5). (Mounting hardware included with

18 Inicator lamp assembly; R/C BRDG and DC VOLTS lights
AI). (Mounting hardwareindluded with indicator assembly)

20 sembly. C dicator lamp assembly; DC POWER, and AC POWER lights

cable assembly, special purpose, elecrrical, ws

cable assembly, special purpose, electrical, w6

CABLE ASSE.nELY, SPECIAL PURPOSE, Electrical, shutter CONe Juvper

cable assembly, special purpose, electrical, camera jutaper

cable assembly, special purpose, electrical. wi

cable assembly, special puppose, elecir:cal, wi


```
1 Screw (4)
    Washer (4)
    Nut (4)
    Terminal (2)
    ConnectorJ1
    Connector J3 (screw (4), washer (4), nú(4), and terminal)
    Connector J4 (screw (4), washer (4), rut (4)).
    Connector J2 (screw (4), washer (4), nut (4)).
    Connector J6 (screw (4), washer (4), nut (4).
    Connector J5: (screw (4), washer (4), nut (4), and terminal)
    Connector J8 (screw (4), washer (4), nut (4), and terminal)
    Connector J7 (screw (4), washer (4), nut (4), and terminal)
    Connector J9 (screw (2)).
    Screw (2).
    Washer (4)
    Nut(f).
    Nut(f).
    Bracket and component assembly A26.
    Connector J10 (screw (4), washer (4), nut (4), and terminal).
    Connector J11 (screw (4), washer (4), nut(4))
    Switch S10 and component assembly, LENS CONE TEST A27
    M(unting hardware included with switch and component assem-
bly:
21 Kn nob (5). (Mounting hardware included with knob.)
P,inted circuit board and component assembly A15
SwritchS8 and jumper assembly, TEST LEFT ASSEMBLY A19.
24 Switch S9 and jumper assembly, TEST RIGHT ASSEMBLY
A23.
25 Switch S5 and jumper assembly, MODE A18.
26 SwitchS1 and jumper assembly, MASTER A17
Sc
Nut (4).
Chassis and component assembly A21
Chassis an
Washer (8)
Nut(8).
Support, top.
Support, top.
Support,
Screw (2).
Post.
Screw (4).
Nut(4).
Terminal(2)
W:asher (2).
Sleeve (4).
Washer, thermafilm:
Trunsistor(2)(Q1,Qž)
Screw (?)
Screw (?
Nut(2).
Screw (4).
Nut(4).
Transformer T2.
Transfor
51 Screw (8
53 Socket (4)(XDSI through XDS4).
54 Washer(8).
55 Terminal(%).
56 Lamp(DS& through DS4).
```

Figure FO-19. Camera analyzer, GS maintenance, exploded view.

bano o- Tre resistaice tolerance

$2 R 7=2.70 \mathrm{HmS} \quad 1080=100$ OnMs

OISK - TYPE
tagle 3- For USE with strles CM, CN, CY AND ©.

COLOB	M10	$\begin{aligned} & \substack{\text { sisic } \\ \hline f 16} \end{aligned}$	$\begin{array}{\|l\|l\|} \substack{2010 \\ 5 \\ \hline 160} \end{array}$	mULTIPLER	Capacitance tolerance CM CN CY CB							min		
black	${ }^{\text {cmicer }}$	-	-	,			+208\%	t208					-80	${ }^{\text {SSHz }}$
onown		,	,	10					-	E	-			
ReD		2	2	100	$\pm 2 \%$		$\pm 2 \%$	± 28	${ }^{\circ}$					
orange		3	3	1.000		+30\%			-		0	300		
reLow		4	4	10.000					ε				$-35^{\circ} \mathrm{r}+12 \mathrm{c} \times$	10.2000 tr
GREEN		5	5		+55\%				¢			500		
Que		${ }^{6}$	6										${ }^{-555^{\circ}+1+50 \mathrm{C}}$	
(e)		,	,											
GRar		-	${ }^{-}$											
White		9	9											
60L0				0			ts\%	*5\%						
SLuER	cm			0.01	+10\%	tion]		$\pm 10 \times$						

- temperatuone coefficient in papts per million per degree centigadee
- opional coomg where metallic piguents are undesanal

By Order of the Secretary of the Army:

Abstract

FRED C. WEYAND General, United States A rmy Official: Chief of Staff PAULT. SMITH • Major General, United States A rmy The Adjutant General

Distribution:

To be distributed in accordance with DA Form 12-31, Direct/General Support 11-series avionics TM literature requirements for OV-1A,B,C and OV-1D aircrafts.

HISA 1686-75

Conmander
US Army Electronics Command
ATTN: AMSEL-MA-Q
Fort Monmouth, New Jersey 07703

Commander
US Army Electronics Command
ATTN: AMSEL-MA-Q
Fort Monmouth, New Jersey 07703

Commander
US Army Electronics Command
ATTN: AMSEL-MA-Q
Fort Monmouth, New Jersey 07703

END

$$
9-18-83
$$

DEPARTMENT OF THE ARMY

[^0]: Trst prowedures Performancestandand
 On the camera analyzer front panel. make the following checks and inspections:
 a. Inspect all controls and switches for loose or a. Screws, nuts, and bolts must be tight and

